zoukankan      html  css  js  c++  java
  • 机械学习--3

    自主编写K-means算法 ,以鸢尾花花瓣长度数据做聚类,并用散点图显示。
    from numpy import *
    import matplotlib.pyplot as plt
    import numpy as np
    from sklearn.datasets import load_iris

    data= load_iris()
    iris_l = data.data[:,1:2]

    y= len(iris_l)#150
    m = iris_l.shape[1]#1
    k = 3
    dist = np.zeros([y,k+1])

    #center
    def initcent(x, k):
    center = x[:k, :]
    return center

    #oushijuli
    def nearest(x, center):
    a=[]
    for j in range(k):
    a.append(abs(x-center[j,:]))
    # print(a)
    return a

    #julei
    def xclassify(x,dist, center):
    for i in range(x.shape[0]):
    dist[i,:k]=nearest(x[i,:],center)
    dist[i, k] = np.argmin(dist[i,:k])
    return dist

    def kcmean(x, dist, center, k):
    centerNew = np.zeros([k,m])
    for c in range(k):
    q = np.where(dist[:,k] == c)
    n = np.mean(x[q])
    if centerNew[c] != n:
    centerNew[c] = n
    return np.array(centerNew)

    center = initcent(iris_l,k)
    while True:
    xclas = xclassify(iris_l, dist, center)
    centerNew=kcmean(iris_l, xclas, center, k)
    if all(center == centerNew):
    break
    else:
    center = centerNew

    a = iris_l.flatten()
    plt.scatter(a, a, c=array(xclas[:,k]), s=50, cmap='rainbow', marker='p', alpha=0.5)
    plt.show()

    用sklearn.cluster.KMeans,鸢尾花花瓣长度数据做聚类,并用散点图显示

    from sklearn.datasets import load_iris
    import matplotlib.pyplot as plt
    from sklearn.cluster import KMeans
    iris = load_iris()
    data = iris['data']
    long = data[:,1]
    long = long.reshape(-1,1)

    model = KMeans(n_clusters=3).fit(long)
    pre = model.predict(long)
    center = model.cluster_centers_
    # print(long[:,0])

    plt.scatter(long[:,0], long[:,0], c=pre, s=50, cmap='rainbow', marker='p', alpha=0.5)
    plt.show()


    鸢尾花完整数据做聚类并用散点图显示.
    from sklearn.datasets import load_iris
    import matplotlib.pyplot as plt
    from sklearn.cluster import KMeans
    iris = load_iris()
    data = iris['data']

    model = KMeans(n_clusters=3).fit(data)
    pre = model.predict(data)
    center = model.cluster_centers_

    plt.scatter(data[:,0], data[:,1], c=pre, s=50, cmap='rainbow', marker='p', alpha=0.5)
    plt.show()

     

  • 相关阅读:
    global
    myTimer
    SQL SERVER 2008 阻止保存要求重新创建表的更改
    Singleton
    logger
    多线程编写
    如何:设置 Silverlight 应用程序以进行CodeUI自动化测试
    【Android】Application is not installed on your phone
    【转载】sql2005中判读视图、表、存储过程等是否存在的语句
    Windows7(win7)系统重装与破解
  • 原文地址:https://www.cnblogs.com/zzkai/p/12697485.html
Copyright © 2011-2022 走看看