Description
丽江河边有n 家很有特色的客栈,客栈按照其位置顺序从1 到n 编号。每家客栈都按照某一种色调进行装饰(总共k 种,用整数0 ~ k-1 表示),且每家客栈都设有一家咖啡店,每家咖啡店均有各自的最低消费。
两位游客一起去丽江旅游,他们喜欢相同的色调,又想尝试两个不同的客栈,因此决定分别住在色调相同的两家客栈中。晚上,他们打算选择一家咖啡店喝咖啡,要求咖啡店位于两人住的两家客栈之间(包括他们住的客栈),且咖啡店的最低消费不超过p。
他们想知道总共有多少种选择住宿的方案,保证晚上可以找到一家最低消费不超过p元的咖啡店小聚。
Input
共n+1 行。
第一行三个整数n,k,p,每两个整数之间用一个空格隔开,分别表示客栈的个数,色调的数目和能接受的最低消费的最高值;
接下来的n 行,第i+1 行两个整数,之间用一个空格隔开,分别表示i 号客栈的装饰色调和i 号客栈的咖啡店的最低消费。
Output
输出只有一行,一个整数,表示可选的住宿方案的总数。
Sample Input
5 2 3
0 5
1 3
0 2
1 4
1 5
Sample Output
3
Hint
【输入输出样例说明】
客栈编号 ① ② ③ ④ ⑤
色调 0 1 0 1 1
最低消费 5 3 2 4 5
2 人要住同样色调的客栈,所有可选的住宿方案包括:住客栈①③,②④,②⑤,④⑤,但是若选择住4、5 号客栈的话,4、5 号客栈之间的咖啡店的最低消费是4,而两人能承受的最低消费是3 元,所以不满足要求。因此只有前3 种方案可选。
数据范围:
对于30%的数据,有n≤100;
对于50%的数据,有n≤1,000;
对于100%的数据,有2≤n≤200,000, 0≤K≤50,0≤P≤100, 0≤最低消费≤100, K≤50,0≤P≤100,
Source
NOIP ,模拟
思路{
易知,应用乘法原理统计答案。
如何统计每段区间的贡献呢?
我们发现,同种颜色的点之间若有满足要求的点,则这往左右两端延伸的点之间可一一对应构成答案。
但是,中间可能有多个点,若以满足要求的旅馆为主线枚举,会重复!
由此,我们想到分步统计。
统计当前点,试图从前面的答案出解。设当前点为i
由于和p的大小无关,那么与i最近的统计最好!
设最近的点为pos。
我们可以利用之前统计的答案更新。
我们发现,根据递推的性质,当前种类颜色的单次答案贡献值和最后一次color[i]出现的位置(不包括i)有关。
设最后一次color[i]出现的位置为nxt[color[i]]
深入分析关系,发现{(重点!!!!)
只有nxt[color[i]]<=pos时单次答案贡献值有为sum[color[i]](个数)
否则就是之前的单次答案。
}在for循环中∑一下就可以了
那么我们可以边输入,边统计,总时间复杂度为O(n)
}
1 #include<algorithm> 2 #include<iostream> 3 #include<cstring> 4 #include<cstdio> 5 #include<vector> 6 #include<queue> 7 #include<ctime> 8 #include<cmath> 9 #include<list> 10 #include<deque> 11 #include<stack> 12 #include<map> 13 #include<set> 14 #define RG register 15 #define LL long long 16 #define dd double 17 #define maxx 200001 18 #define rs ((o<<1)|1) 19 #define ls (o<<1) 20 #define mid ((l+r)>>1) 21 using namespace std; 22 int nxt[51],ans[51],sum[51],hha; 23 int n,k,p,pos;LL anss; 24 int main(){ 25 scanf("%d%d%d",&n,&k,&p); 26 for(RG int i=1;i<=n;++i){ 27 int num,cost; 28 scanf("%d%d",&num,&cost); 29 if(cost<=p)pos=i; 30 if(nxt[num]<=pos)ans[num]=sum[num]; 31 anss+=ans[num],sum[num]++,nxt[num]=i; 32 }cout<<anss;return 0; 33 }