zoukankan      html  css  js  c++  java
  • [HDU]1086——You can Solve a Geometry Problem too

    Problem Description
    Many geometry(几何)problems were designed in the ACM/ICPC. And now, I also prepare a geometry problem for this final exam. According to the experience of many ACMers, geometry problems are always much trouble, but this problem is very easy, after all we are now attending an exam, not a contest :)
    Give you N (1<=N<=100) segments(线段), please output the number of all intersections(交点). You should count repeatedly if M (M>2) segments intersect at the same point.
    Note:
    You can assume that two segments would not intersect at more than one point.

    Input

    Input contains multiple test cases. Each test case contains a integer N (1=N<=100) in a line first, and then N lines follow. Each line describes one segment with four float values x1, y1, x2, y2 which are coordinates of the segment’s ending.
    A test case starting with 0 terminates the input and this test case is not to be processed.
    Output
    For each case, print the number of intersections, and one line one case.
    Sample Input
    2 0.00 0.00 1.00 1.00 0.00 1.00 1.00 0.00 3 0.00 0.00 1.00 1.00 0.00 1.00 1.00 0.000 0.00 0.00 1.00 0.00 0
    Sample Output
    1 3
    思路{若两线段相交,另外两线段端点在该直线两侧,由此想到叉乘!
     1 #include<map>
     2 #include<set>
     3 #include<list>
     4 #include<deque>
     5 #include<cmath>
     6 #include<queue>
     7 #include<stack>
     8 #include<vector>
     9 #include<cstdio>
    10 #include<complex>
    11 #include<cstring>
    12 #include<cstdlib>
    13 #include<iostream>
    14 #include<algorithm>
    15 #define db double
    16 #define LL long long
    17 #define maxx 200
    18 #define RG register
    19 using namespace std;
    20 struct point{
    21   db x,y;
    22   point() {}
    23   point(db _x,db _y):x(_x),y(_y) {}
    24   point operator -(const point a) const {
    25     return point(x-a.x,y-a.y);
    26   }
    27   point operator +(const point a) const {
    28     return point(x+a.x,y+a.y);
    29   }
    30   point operator * (const db k) const {
    31     return point(k*x,k*y);
    32   }
    33   db operator ^(const point a) const {
    34     return x*a.y-y*a.x;
    35   }
    36   db operator *(const point a) const {
    37     return x*a.x+y*a.y;
    38   }
    39   bool operator ==(const point a) const {
    40     return x==a.x&&y==a.y;
    41   }
    42 }a[maxx+maxx+maxx];
    43 int n;/*
    44 bool check(point A,point B,point C,point D){
    45   if(((B.y-A.y)/(B.x-A.x))==((D.y-C.y)/(D.x-C.x)){
    46       if(A.x==C.x&&A.y==C.y&&B.x==D.x&&B.y==D.y)return 1;
    47       point AC,AB;AC=(C-A);AB=(B-A);
    48       if((AC.x*AB.y-AC.y*AB.x)==0&&)return 1;
    49   }
    50   db k=-((A-C)^(D-C))/((B-A)^(D-C));
    51   point P,AB;P=(B-A)*k+A;AB=(B-A);
    52   if(k<0||k>1)return 0; 
    53   return 1;
    54   }*/
    55 bool check(point A,point B,point C,point D){
    56   point AB,AC,AD;AB=B-A,AC=C-A,AD=D-A;
    57   db k1=AB^AC,k2=AB^AD;
    58   point CB,CD,CA;CB=B-C,CD=D-C,CA=A-C;
    59   db k3=CD^CA,k4=CD^CB;
    60   if(k1*k2<=0&&k3*k4<=0)return 1;
    61   return 0;
    62 }
    63 int main(){
    64   while(scanf("%d",&n)&&n){LL ans=0;db x,y;
    65     for(RG int i=1;i<=n;++i)
    66       cin>>x>>y,a[(i*2)-1]=point(x,y),
    67     cin>>x>>y,a[(i*2)]=point(x,y);
    68     for(RG int i=1;i<=2*n;i+=2)
    69       for(RG int j=1;j<=2*n;j+=2){
    70     if(i==j)continue;
    71     if(check(a[i],a[i+1],a[j],a[j+1]))ans++;
    72       }
    73     printf("%lld
    ",ans/2);
    74   }
    75   return 0;
    76 }
  • 相关阅读:
    2015年第5本(英文第4本):Death on the Nile尼罗河上的惨案
    2015年第4本(英文第3本):Godfather教父
    2015年第3本(英文第2本):Daughter of Deceit
    2015年第2本(英文第1本):《The Practice of Programming》
    2015年第1本读书行动笔记:《把你的英语用起来》
    GTD桌面2.0
    独立博客开张!有关读书、GTD和IT方面的内容将发布在新网站上
    2015计划
    Swift
    Swift
  • 原文地址:https://www.cnblogs.com/zzmmm/p/6950538.html
Copyright © 2011-2022 走看看