zoukankan      html  css  js  c++  java
  • [HDU]1086——You can Solve a Geometry Problem too

    Problem Description
    Many geometry(几何)problems were designed in the ACM/ICPC. And now, I also prepare a geometry problem for this final exam. According to the experience of many ACMers, geometry problems are always much trouble, but this problem is very easy, after all we are now attending an exam, not a contest :)
    Give you N (1<=N<=100) segments(线段), please output the number of all intersections(交点). You should count repeatedly if M (M>2) segments intersect at the same point.
    Note:
    You can assume that two segments would not intersect at more than one point.

    Input

    Input contains multiple test cases. Each test case contains a integer N (1=N<=100) in a line first, and then N lines follow. Each line describes one segment with four float values x1, y1, x2, y2 which are coordinates of the segment’s ending.
    A test case starting with 0 terminates the input and this test case is not to be processed.
    Output
    For each case, print the number of intersections, and one line one case.
    Sample Input
    2 0.00 0.00 1.00 1.00 0.00 1.00 1.00 0.00 3 0.00 0.00 1.00 1.00 0.00 1.00 1.00 0.000 0.00 0.00 1.00 0.00 0
    Sample Output
    1 3
    思路{若两线段相交,另外两线段端点在该直线两侧,由此想到叉乘!
     1 #include<map>
     2 #include<set>
     3 #include<list>
     4 #include<deque>
     5 #include<cmath>
     6 #include<queue>
     7 #include<stack>
     8 #include<vector>
     9 #include<cstdio>
    10 #include<complex>
    11 #include<cstring>
    12 #include<cstdlib>
    13 #include<iostream>
    14 #include<algorithm>
    15 #define db double
    16 #define LL long long
    17 #define maxx 200
    18 #define RG register
    19 using namespace std;
    20 struct point{
    21   db x,y;
    22   point() {}
    23   point(db _x,db _y):x(_x),y(_y) {}
    24   point operator -(const point a) const {
    25     return point(x-a.x,y-a.y);
    26   }
    27   point operator +(const point a) const {
    28     return point(x+a.x,y+a.y);
    29   }
    30   point operator * (const db k) const {
    31     return point(k*x,k*y);
    32   }
    33   db operator ^(const point a) const {
    34     return x*a.y-y*a.x;
    35   }
    36   db operator *(const point a) const {
    37     return x*a.x+y*a.y;
    38   }
    39   bool operator ==(const point a) const {
    40     return x==a.x&&y==a.y;
    41   }
    42 }a[maxx+maxx+maxx];
    43 int n;/*
    44 bool check(point A,point B,point C,point D){
    45   if(((B.y-A.y)/(B.x-A.x))==((D.y-C.y)/(D.x-C.x)){
    46       if(A.x==C.x&&A.y==C.y&&B.x==D.x&&B.y==D.y)return 1;
    47       point AC,AB;AC=(C-A);AB=(B-A);
    48       if((AC.x*AB.y-AC.y*AB.x)==0&&)return 1;
    49   }
    50   db k=-((A-C)^(D-C))/((B-A)^(D-C));
    51   point P,AB;P=(B-A)*k+A;AB=(B-A);
    52   if(k<0||k>1)return 0; 
    53   return 1;
    54   }*/
    55 bool check(point A,point B,point C,point D){
    56   point AB,AC,AD;AB=B-A,AC=C-A,AD=D-A;
    57   db k1=AB^AC,k2=AB^AD;
    58   point CB,CD,CA;CB=B-C,CD=D-C,CA=A-C;
    59   db k3=CD^CA,k4=CD^CB;
    60   if(k1*k2<=0&&k3*k4<=0)return 1;
    61   return 0;
    62 }
    63 int main(){
    64   while(scanf("%d",&n)&&n){LL ans=0;db x,y;
    65     for(RG int i=1;i<=n;++i)
    66       cin>>x>>y,a[(i*2)-1]=point(x,y),
    67     cin>>x>>y,a[(i*2)]=point(x,y);
    68     for(RG int i=1;i<=2*n;i+=2)
    69       for(RG int j=1;j<=2*n;j+=2){
    70     if(i==j)continue;
    71     if(check(a[i],a[i+1],a[j],a[j+1]))ans++;
    72       }
    73     printf("%lld
    ",ans/2);
    74   }
    75   return 0;
    76 }
  • 相关阅读:
    洛谷P1120信息奥赛一本通1442 小木棍
    洛谷P1378 油滴扩展
    洛谷P1156 垃圾陷阱
    mybatis-Plus 实践篇之逆向工程
    Interceptor的使用及探究
    mysql,oracle,sqlServer 元数据查询
    navicat premium15免费版安装说明(附工具)
    打印日志你真的会吗?
    线程基础知识-必知必会
    空间复杂度&时间复杂度
  • 原文地址:https://www.cnblogs.com/zzmmm/p/6950538.html
Copyright © 2011-2022 走看看