zoukankan      html  css  js  c++  java
  • poj-2689-素数区间筛

    Description

    The branch of mathematics called number theory is about properties of numbers. One of the areas that has captured the interest of number theoreticians for thousands of years is the question of primality. A prime number is a number that is has no proper factors (it is only evenly divisible by 1 and itself). The first prime numbers are 2,3,5,7 but they quickly become less frequent. One of the interesting questions is how dense they are in various ranges. Adjacent primes are two numbers that are both primes, but there are no other prime numbers between the adjacent primes. For example, 2,3 are the only adjacent primes that are also adjacent numbers. 
    Your program is given 2 numbers: L and U (1<=L< U<=2,147,483,647), and you are to find the two adjacent primes C1 and C2 (L<=C1< C2<=U) that are closest (i.e. C2-C1 is the minimum). If there are other pairs that are the same distance apart, use the first pair. You are also to find the two adjacent primes D1 and D2 (L<=D1< D2<=U) where D1 and D2 are as distant from each other as possible (again choosing the first pair if there is a tie).

    Input

    Each line of input will contain two positive integers, L and U, with L < U. The difference between L and U will not exceed 1,000,000.

    Output

    For each L and U, the output will either be the statement that there are no adjacent primes (because there are less than two primes between the two given numbers) or a line giving the two pairs of adjacent primes.

    Sample Input

    2 17
    14 17
    

    Sample Output

    2,3 are closest, 7,11 are most distant.
    There are no adjacent primes.
    

    Source

        给出[L,R],求区间内的素数,R<=2147483647,R-L<=1000000, 注意到只用sqrt(R)以内的素数就可以筛出[L,R]里面的素数,
    可以先对sqrt(MAX_INT)内的素数打一个表。对于[L,R]的询问,用小于等于sqrt(R)的素数筛一下然后统计一下就好了。注意L<2的时候
    要特判一下否则容易把1也给打进去。
        
     1 #include<iostream>
     2 #include<cstdio>
     3 #include<cstring>
     4 #include<cmath>
     5 #include<vector>
     6 using namespace std;
     7 #define LL long long 
     8 #define mp make_pair
     9 #define pb push_back
    10 #define inf 0x3f3f3f3f
    11 int maxn=100005;
    12 vector<int>prime;
    13 vector<int>p;
    14 bool is[1000100];
    15 void init(){
    16     is[0]=is[1]=1;
    17     for(LL i=2;i<=maxn;++i){
    18         if(!is[i]) prime.push_back(i);
    19         for(LL j=0;j<prime.size()&&i*prime[j]<=maxn;j++){
    20             is[i*prime[j]]=1;
    21             if(i%prime[j]) break;
    22         }
    23     }
    24 }
    25 void solve(LL L,LL R){
    26     p.clear();
    27     memset(is,0,sizeof(is));
    28     for(LL i=0;i<prime.size()&&1LL*prime[i]*prime[i]<=R;i++){
    29         LL s=L/prime[i]+(L%prime[i]>0);
    30         if(s==1)s=2;
    31         for(LL j=s;j*prime[i]<=R;j++){
    32             if(j*prime[i]>=L) is[j*prime[i]-L]=1;
    33         }
    34     }
    35     for(int i=0;i<=R-L;i++){
    36         if(!is[i]&&i+L>=2) p.push_back(i+L);
    37     }
    38 }
    39 int main(){
    40     LL L,R;
    41     init();
    42     while(scanf("%lld%lld",&L,&R)!=EOF){
    43         solve(L,R);
    44     
    45         if(p.size()<2) puts("There are no adjacent primes.");
    46         else{
    47             int c1,c2,m1,m2;
    48             c1=m1=p[0];
    49             c2=m2=p[1];
    50             for(int i=1;i<p.size();++i){
    51                 if(p[i]-p[i-1]<c2-c1){
    52                     c1=p[i-1];
    53                     c2=p[i];
    54                 }
    55                 if(p[i]-p[i-1]>m2-m1){
    56                     m1=p[i-1];
    57                     m2=p[i];
    58                 }
    59             }
    60             printf("%d,%d are closest, %d,%d are most distant.
    ",c1,c2,m1,m2);
    61         }
    62     }
    63     return 0;
    64 }
  • 相关阅读:
    jekyll+livereload+chrome插件-更新文件后自动刷新
    boostraps+jekyll+sass/scss+less+grunt整合使用详细备忘
    Centos使用keepalived配置MySQL双主热备集群
    MySQL数据库的集群方案
    Nginx使用Lua脚本加解密RSA字符串
    Nginx使用Lua脚本连接Redis验证身份并下载文件
    Centos安装ELK
    Centos7中搭建Redis6集群操作步骤
    only-office以Docker方式安装使用
    Kafka笔记
  • 原文地址:https://www.cnblogs.com/zzqc/p/9480469.html
Copyright © 2011-2022 走看看