zoukankan      html  css  js  c++  java
  • 证明最优化loss function+penalty等价于最优化带限制条件的loss function

    Equivalence of constrained and unconstrained form for lasso

    Problem 1 The unconstrained form of lasso

    [operatorname{min}_{eta}|y-X eta|_{2}^{2}+lambda|eta|_{1} ag{1} ]

    Suppose we solve Problem 1 for a given (lambda) and obtain its solution (eta_{ ext{problem1}}^*(lambda)).

    Problem 2 The constrained form of lasso

    [operatorname{min}_{eta}|Y-X eta|_{2}^{2} ]

    [s.t. {|eta|_{1} leq s} ]

    We can rewrite the constrained form into unconstrained form using Lagrangian mutiplier method.

    The unconstrained form for the problem is given by:

    [operatorname{min}_{eta,v}|Y-X eta|_{2}^{2}+vleft(|eta|_{1}-s ight) ag{2} ]

    Since the objective and the constraints are convex, so we have the pair ((eta^*,v^*)) is primal-dual optimal if and only if it is a saddle-point of the Lagrangian.

    [operatorname{min}_{eta}operatorname{max}_{v}|Y-X eta|_{2}^{2}+vleft(|eta|_{1}-s ight) =operatorname{max}_{v}operatorname{min}_{eta}|Y-X eta|_{2}^{2}+vleft(|eta|_{1}-s ight) ]

    First we solve the

    [operatorname{min}_{eta}|Y-X eta|_{2}^{2}+vleft(|eta|_{1}-s ight) ]

    The form is the same with eq(1), so we have the same solution with Problem 1, i.e. (eta_{ ext{problem2}}^*=eta_{ ext{problem1}}^*(v))

    Then we solve

    [operatorname{max}_{v}|Y-X eta^*(v)|_{2}^{2}+vleft(|eta^*(v)|_{1}-s ight) ]

    The solution is (v^*).

    Finally, we have that (eta^*_{ ext{problem2}}=eta_{ ext{problem1}}^*(v^*))

    Therefore,if we let (lambda) in Problem 1 be (v^*), the solution in Problem 1 is (eta_{ ext{problem1}}^*=eta_{ ext{problem1}}^*(lambda)=eta_{ ext{problem1}}^*(v^*)), this is the same with solution in Problem 2.

    So the two forms are equivalent.

    Equivalence of constrained and unconstrained form for Ridge Regression

    Problem 1 The unconstrained form of ridge regression

    [operatorname{min}_{eta}|y-X eta|_{2}^{2}+lambda|eta|_{2}^{2} ag{3} ]

    Suppose we solve Problem 3 using F.O.C for a given (lambda) and obtain its solution (eta^*(lambda)).

    Problem 2 The constrained form of ridge regression

    [operatorname{min}_{eta}|Y-X eta|_{2}^{2} ]

    [s.t. {|eta|_{2}^2 leq s} ]

    We can rewrite the constrained form into unconstrained form using Lagrangian mutiplier method.

    The unconstrained form for the problem is given by:

    [operatorname{min}_{eta,v}|Y-X eta|_{2}^{2}+vleft(|eta|_{2}^{2}-s ight) ag{4} ]

    The first KKT condition (stationarity) says that the gradient with respect to (eta) of the lagrangian equals to 0. Since s is independent on (eta), so solving for the derivative of eq (3) is thus equivalent to solving for the derivate of eq (4) when (lambda=v) .

    The second KKT condition (complementarity) says that

    [vleft(|eta|_{2}^{2}-s ight)=0 ]

    Let (s=|eta^*(lambda)|^2), then we can find that (v^*=lambda) and (eta^*=eta^*(lambda)) satisfy the KKT conditions for Problem 2, so they are the solution of Problem 2, which is the same as the solution in Problem 1.

    So the two forms are equivalent.

    本文为跑得飞快的凤凰花原创,如需转载,请标明出处~
  • 相关阅读:
    web网站接入谷歌登录
    ThinkPHP网页端网站应用接入微信登录
    [卡特兰数]
    KALI LINUX 工具大全概览(长期更新中。。。)
    如何使用burp suite 来pj验证码
    windows小技巧(长期更新)
    如何关闭火绒自启动
    VMware USB Arbitration Service服务-错误3:系统找不到指定的路径
    windows下的burpsuite v2021.7 安装与配置
    拿到一台新window应该做些什么事
  • 原文地址:https://www.cnblogs.com/zzqingwenn/p/12668264.html
Copyright © 2011-2022 走看看