zoukankan      html  css  js  c++  java
  • 1127

    1127 - Funny Knapsack
    Time Limit: 2 second(s) Memory Limit: 32 MB

    Given n integers and a knapsack of weight W, you have to count the number of combinations for which you can add the items in the knapsack without overflowing the weight.

    Input

    Input starts with an integer T (≤ 100), denoting the number of test cases.

    Each case contains two integers n (1 ≤ n ≤ 30) and W (1 ≤ W ≤ 2 * 109) and the next line will contain n integers separated by spaces. The integers will be non negative and less than 109.

    Output

    For each set of input, print the case number and the number of possible combinations.

    Sample Input

    Output for Sample Input

    3

    1 1

    1

    1 1

    2

    3 10

    1 2 4

    Case 1: 2

    Case 2: 1

    Case 3: 8

    思路:一个超大背包问题,用折半枚举然后二分查找;

     1 #include<stdio.h>
     2 #include<algorithm>
     3 #include<iostream>
     4 #include<string.h>
     5 #include<queue>
     6 #include<stack>
     7 #include<set>
     8 #include<math.h>
     9 using namespace std;
    10 typedef long long LL;
    11 LL ans[100];
    12 LL ak1[40000];
    13 LL ak2[40000];
    14 LL bk1[50];
    15 LL bk2[50];
    16 int main(void)
    17 {
    18     int i,j,k;
    19     scanf("%d",&k);
    20     int s;
    21     int n;
    22     LL m;
    23     for(s=1; s<=k; s++)
    24     {
    25         scanf("%d %lld",&n,&m);
    26         for(i=0; i<n; i++)
    27         {
    28             scanf("%lld",&ans[i]);
    29         }
    30         for(i=0; i<(n/2); i++)
    31         {
    32             bk1[i]=ans[i];
    33         }
    34         for(j=0; i<n; j++,i++)
    35         {
    36             bk2[j]=ans[i];
    37         }
    38         int n1=(n/2);
    39         int n2=n-n1;
    40         for(i=0; i<=(1<<n1)-1; i++)
    41         {
    42             LL sum=0;
    43             for(j=0; j<n1; j++)
    44             {
    45                 if(i&(1<<j))
    46                 {
    47                     sum+=bk1[j];
    48                 }
    49             }
    50             ak1[i]=sum;
    51         }
    52         int num=(1<<n2)-1;
    53         for(i=0; i<=(1<<n2)-1; i++)
    54         {
    55             LL sum=0;
    56             for(j=0; j<n2; j++)
    57             {
    58                 if(i&(1<<j))
    59                     sum+=bk2[j];
    60             }
    61             ak2[i]=sum;
    62         }
    63         sort(ak2,ak2+num);
    64         LL sum=0;
    65         for(i=0; i<(1<<n1); i++)
    66         {
    67             int l=0;
    68             int r=(1<<n2)-1;
    69             LL ask=m-ak1[i];
    70             if(ask>=0)
    71             {
    72                 int cc=-1;
    73                 while(l<=r)
    74                 {
    75                     int mid=(l+r)/2;
    76                     if(ak2[mid]<=ask)
    77                     {
    78                         cc=mid;
    79                         l=mid+1;
    80                     }
    81                     else r=mid-1;
    82                 }
    83                 sum+=(cc+1);
    84 
    85             }
    86         }
    87         printf("Case %d: %lld
    ",s,sum);
    88     }
    89     return 0;
    90 }
    油!油!you@
  • 相关阅读:
    mysql query insert中文乱码
    git rebase
    ubuntu下怎么合并windows下分割的zip包
    [Matlab]双线性变换法设计数字带阻滤波器
    [Matlab]双线性变换法设计数字带通滤波器
    [Matlab]双线性变换法设计数字高通滤波器
    [Matlab]双线性变换法设计数字低通滤波器
    [Matlab]四种IIR滤波器纹波特性对比
    [Matlab]椭圆滤波器设计:低通、高通、带通和带阻
    [Matlab]切比雪夫Ⅱ型滤波器设计:低通、高通、带通和带阻
  • 原文地址:https://www.cnblogs.com/zzuli2sjy/p/5572704.html
Copyright © 2011-2022 走看看