zoukankan      html  css  js  c++  java
  • 1127

    1127 - Funny Knapsack
    Time Limit: 2 second(s) Memory Limit: 32 MB

    Given n integers and a knapsack of weight W, you have to count the number of combinations for which you can add the items in the knapsack without overflowing the weight.

    Input

    Input starts with an integer T (≤ 100), denoting the number of test cases.

    Each case contains two integers n (1 ≤ n ≤ 30) and W (1 ≤ W ≤ 2 * 109) and the next line will contain n integers separated by spaces. The integers will be non negative and less than 109.

    Output

    For each set of input, print the case number and the number of possible combinations.

    Sample Input

    Output for Sample Input

    3

    1 1

    1

    1 1

    2

    3 10

    1 2 4

    Case 1: 2

    Case 2: 1

    Case 3: 8

    思路:一个超大背包问题,用折半枚举然后二分查找;

     1 #include<stdio.h>
     2 #include<algorithm>
     3 #include<iostream>
     4 #include<string.h>
     5 #include<queue>
     6 #include<stack>
     7 #include<set>
     8 #include<math.h>
     9 using namespace std;
    10 typedef long long LL;
    11 LL ans[100];
    12 LL ak1[40000];
    13 LL ak2[40000];
    14 LL bk1[50];
    15 LL bk2[50];
    16 int main(void)
    17 {
    18     int i,j,k;
    19     scanf("%d",&k);
    20     int s;
    21     int n;
    22     LL m;
    23     for(s=1; s<=k; s++)
    24     {
    25         scanf("%d %lld",&n,&m);
    26         for(i=0; i<n; i++)
    27         {
    28             scanf("%lld",&ans[i]);
    29         }
    30         for(i=0; i<(n/2); i++)
    31         {
    32             bk1[i]=ans[i];
    33         }
    34         for(j=0; i<n; j++,i++)
    35         {
    36             bk2[j]=ans[i];
    37         }
    38         int n1=(n/2);
    39         int n2=n-n1;
    40         for(i=0; i<=(1<<n1)-1; i++)
    41         {
    42             LL sum=0;
    43             for(j=0; j<n1; j++)
    44             {
    45                 if(i&(1<<j))
    46                 {
    47                     sum+=bk1[j];
    48                 }
    49             }
    50             ak1[i]=sum;
    51         }
    52         int num=(1<<n2)-1;
    53         for(i=0; i<=(1<<n2)-1; i++)
    54         {
    55             LL sum=0;
    56             for(j=0; j<n2; j++)
    57             {
    58                 if(i&(1<<j))
    59                     sum+=bk2[j];
    60             }
    61             ak2[i]=sum;
    62         }
    63         sort(ak2,ak2+num);
    64         LL sum=0;
    65         for(i=0; i<(1<<n1); i++)
    66         {
    67             int l=0;
    68             int r=(1<<n2)-1;
    69             LL ask=m-ak1[i];
    70             if(ask>=0)
    71             {
    72                 int cc=-1;
    73                 while(l<=r)
    74                 {
    75                     int mid=(l+r)/2;
    76                     if(ak2[mid]<=ask)
    77                     {
    78                         cc=mid;
    79                         l=mid+1;
    80                     }
    81                     else r=mid-1;
    82                 }
    83                 sum+=(cc+1);
    84 
    85             }
    86         }
    87         printf("Case %d: %lld
    ",s,sum);
    88     }
    89     return 0;
    90 }
    油!油!you@
  • 相关阅读:
    C#新特性
    蛋清打发奶油状
    VS 2015 开发Android底部导航条----[实例代码,多图]
    使用微软的MSBuild.exe编译VS .sln .csproj 文件
    双色球基础分析--SQL
    Windows 7 中的 God Mode
    Free Online SQL Formatter
    Windows 特殊文件夹
    常用DNS列表(电信、网通)
    C语言词法分析:C#源码
  • 原文地址:https://www.cnblogs.com/zzuli2sjy/p/5572704.html
Copyright © 2011-2022 走看看