zoukankan      html  css  js  c++  java
  • 1127

    1127 - Funny Knapsack
    Time Limit: 2 second(s) Memory Limit: 32 MB

    Given n integers and a knapsack of weight W, you have to count the number of combinations for which you can add the items in the knapsack without overflowing the weight.

    Input

    Input starts with an integer T (≤ 100), denoting the number of test cases.

    Each case contains two integers n (1 ≤ n ≤ 30) and W (1 ≤ W ≤ 2 * 109) and the next line will contain n integers separated by spaces. The integers will be non negative and less than 109.

    Output

    For each set of input, print the case number and the number of possible combinations.

    Sample Input

    Output for Sample Input

    3

    1 1

    1

    1 1

    2

    3 10

    1 2 4

    Case 1: 2

    Case 2: 1

    Case 3: 8

    思路:一个超大背包问题,用折半枚举然后二分查找;

     1 #include<stdio.h>
     2 #include<algorithm>
     3 #include<iostream>
     4 #include<string.h>
     5 #include<queue>
     6 #include<stack>
     7 #include<set>
     8 #include<math.h>
     9 using namespace std;
    10 typedef long long LL;
    11 LL ans[100];
    12 LL ak1[40000];
    13 LL ak2[40000];
    14 LL bk1[50];
    15 LL bk2[50];
    16 int main(void)
    17 {
    18     int i,j,k;
    19     scanf("%d",&k);
    20     int s;
    21     int n;
    22     LL m;
    23     for(s=1; s<=k; s++)
    24     {
    25         scanf("%d %lld",&n,&m);
    26         for(i=0; i<n; i++)
    27         {
    28             scanf("%lld",&ans[i]);
    29         }
    30         for(i=0; i<(n/2); i++)
    31         {
    32             bk1[i]=ans[i];
    33         }
    34         for(j=0; i<n; j++,i++)
    35         {
    36             bk2[j]=ans[i];
    37         }
    38         int n1=(n/2);
    39         int n2=n-n1;
    40         for(i=0; i<=(1<<n1)-1; i++)
    41         {
    42             LL sum=0;
    43             for(j=0; j<n1; j++)
    44             {
    45                 if(i&(1<<j))
    46                 {
    47                     sum+=bk1[j];
    48                 }
    49             }
    50             ak1[i]=sum;
    51         }
    52         int num=(1<<n2)-1;
    53         for(i=0; i<=(1<<n2)-1; i++)
    54         {
    55             LL sum=0;
    56             for(j=0; j<n2; j++)
    57             {
    58                 if(i&(1<<j))
    59                     sum+=bk2[j];
    60             }
    61             ak2[i]=sum;
    62         }
    63         sort(ak2,ak2+num);
    64         LL sum=0;
    65         for(i=0; i<(1<<n1); i++)
    66         {
    67             int l=0;
    68             int r=(1<<n2)-1;
    69             LL ask=m-ak1[i];
    70             if(ask>=0)
    71             {
    72                 int cc=-1;
    73                 while(l<=r)
    74                 {
    75                     int mid=(l+r)/2;
    76                     if(ak2[mid]<=ask)
    77                     {
    78                         cc=mid;
    79                         l=mid+1;
    80                     }
    81                     else r=mid-1;
    82                 }
    83                 sum+=(cc+1);
    84 
    85             }
    86         }
    87         printf("Case %d: %lld
    ",s,sum);
    88     }
    89     return 0;
    90 }
    油!油!you@
  • 相关阅读:
    亮剑.NET的系列文章之ADO.NET五大类(二)
    Effective C++ 读书笔记之Part6.Inheritance and ObjectOriented Design
    论计算机专业毕业生的人文素养
    LLVM每日谈之十四 如何给Clang添加一个属性
    那些年,面试中遇到的那些奇葩们
    亮剑.NET的系列文章之.NET实现三层架构(三)
    [转]C++预编译头文件
    [转]文件间的编译依赖性
    [转]详解编译预处理
    [转]Visual Studio 2005 IDE 技巧和窍门
  • 原文地址:https://www.cnblogs.com/zzuli2sjy/p/5572704.html
Copyright © 2011-2022 走看看