zoukankan      html  css  js  c++  java
  • 1193

    1193 - Dice (II)
    Time Limit: 3 second(s) Memory Limit: 32 MB

    You have N dices; each of them has K faces numbered from 1 to K. Now you can arrange the N dices in a line. If the summation of the top faces of the dices is S, you calculate the score as the multiplication of all the top faces.

    Now you are given N, K, S; you have to calculate the summation of all the scores.

    Input

    Input starts with an integer T (≤ 25), denoting the number of test cases.

    Each case contains three integers: N (1 ≤ N ≤ 1000) K (1 ≤ K ≤ 1000) S (0 ≤ S ≤ 15000).

    Output

    For each case print the case number and the result modulo 100000007.

    Sample Input

    Output for Sample Input

    5

    1 6 3

    2 9 8

    500 6 1000

    800 800 10000

    2 100 10

    Case 1: 3

    Case 2: 84

    Case 3: 74335590

    Case 4: 33274428

    Case 5: 165


    PROBLEM SETTER: JANE ALAM JAN
    思路:和1145差不多。
    dp[i][j]表示前i次点数之和为j的数所有对数的各个的乘积之和。
    那么dp[i][j]=dp[i-1][j-1]+dp[i-1][j-2]*2+....dp[i-1][j-k]*k;
    这样的复杂度是n*n*n;这样是过不了的;
    那么dp[i][j+1]=dp[i-1][j]+dp[i-1][j-1]*2+dp[i-1][j-2]*3+....dp[i-1][j-k+1]*k;
    那么dp[i][j+1]=dp[i][j-1]+dp[i-1][j-1]+sum[j-2]-sum[max(0,j-1-m)]-dp[i-1][max(0,j-m-1)]*m;
    那么我们每次维护一个dp[i][j]的前缀和就可以了。
     1 #include<stdio.h>
     2 #include<algorithm>
     3 #include<iostream>
     4 #include<string.h>
     5 #include<math.h>
     6 #include<stdlib.h>
     7 #include<queue>
     8 using namespace std;
     9 typedef long long LL;
    10 LL dp[2][15005];
    11 const int mod=100000007;
    12 LL sum[15005];
    13 int main(void)
    14 {
    15     int i,j,k;
    16     scanf("%d",&k);
    17     int s;
    18     int n,m,c;
    19     for(s=1; s<=k; s++)
    20     {
    21         scanf("%d %d %d",&n,&m,&c);
    22         memset(dp,0,sizeof(dp));
    23         memset(sum,0,sizeof(sum));
    24         for(i=1; i<=m; i++)
    25         {
    26             dp[1][i]=i;
    27             dp[1][i]%=mod;
    28             sum[i]=(sum[i-1]+dp[1][i])%mod;
    29         }
    30         for(i=m+1;i<=c;i++)
    31             sum[i]=sum[i-1];
    32         for(i=2; i<=n; i++)
    33         {
    34             int uu=(i)%2;
    35             int kk=(i+1)%2;
    36             for(j=0; j<i; j++)
    37             {
    38                 dp[uu][j]=0;
    39             }
    40             for(j=i;j<=c; j++)
    41             {
    42       dp[uu][j]=((dp[kk][j-1]+dp[uu][j-1])%mod+(sum[j-2]-sum[max(0,j-1-m)])%mod-dp[kk][max(0,j-m-1)]*m%mod)%mod;
    43                 dp[uu][j]%=mod;
    44                 dp[uu][j]+=mod;
    45                 dp[uu][j]%=mod;
    46             }
    47             for(j=1; j<=c; j++)
    48             {
    49                 sum[j]=sum[j-1]+dp[uu][j];
    50                 sum[j]%=mod;
    51             }
    52         }
    53         printf("Case %d: ",s);
    54         printf("%lld
    ",(dp[n%2][c]%mod+mod)%mod);
    55     }
    56     return 0;
    57 }
     
    油!油!you@
  • 相关阅读:
    Maven简介
    Activiti核心API
    Activiti数据库支持
    使用idea进行activiti工作流开发入门学习
    Activiti 工作流
    枚举其他用法
    枚举类的基本使用
    kotlin中抽象类
    kotlin中接口
    kotlin 类的继承
  • 原文地址:https://www.cnblogs.com/zzuli2sjy/p/5636173.html
Copyright © 2011-2022 走看看