zoukankan      html  css  js  c++  java
  • Interesting Fibonacci(hdu 2814)

    Interesting Fibonacci

    Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
    Total Submission(s): 1071    Accepted Submission(s): 229


    Problem Description
    In mathematics, the Fibonacci numbers are a sequence of numbers named after Leonardo of Pisa, known as Fibonacci (a contraction of filius Bonaccio, "son of Bonaccio"). Fibonacci's 1202 book Liber Abaci introduced the sequence to Western European mathematics, although the sequence had been previously described in Indian mathematics.
      The first number of the sequence is 0, the second number is 1, and each subsequent number is equal to the sum of the previous two numbers of the sequence itself, yielding the sequence 0, 1, 1, 2, 3, 5, 8, etc. In mathematical terms, it is defined by the following recurrence relation:

    That is, after two starting values, each number is the sum of the two preceding numbers. The first Fibonacci numbers (sequence A000045 in OEIS), also denoted as F[n];
    F[n] can be calculate exactly by the following two expressions:


    A Fibonacci spiral created by drawing arcs connecting the opposite corners of squares in the Fibonacci tiling; this one uses squares of sizes 1, 1, 2, 3, 5, 8, 13, 21, and 34;

    So you can see how interesting the Fibonacci number is.
    Now AekdyCoin denote a function G(n)

    Now your task is quite easy, just help AekdyCoin to calculate the value of G (n) mod C
     
    Input
    The input consists of T test cases. The number of test cases (T is given in the first line of the input. Each test case begins with a line containing A, B, N, C (10<=A, B<2^64, 2<=N<2^64, 1<=C<=300)
     
    Output
    For each test case, print a line containing the test case number( beginning with 1) followed by a integer which is the value of G(N) mod C
     
    Sample Input
    1 17 18446744073709551615 1998 139
     
    Sample Output
    Case 1: 120
     
    Author
    AekdyCoin
     思路:欧拉函数;
    G(n)= F(a^b)^((F(a^b))^(N-1));然后,找一下数列的循环节,然后应为a^b>300,所以直接用欧拉降幂,((F(a^b)^(N-1))%oula[C] + oula[C]);因为F(a^b)^(N-1) > oula[C];
    这样幂数就就降下来了。
      1 #include<stdio.h>
      2 #include<algorithm>
      3 #include<stdlib.h>
      4 #include<queue>
      5 #include<iostream>
      6 #include<string.h>
      7 #include<math.h>
      8 using namespace std;
      9 typedef unsigned long long LL;
     10 bool prime[400];
     11 int ans[400];
     12 int oula[400];
     13 int ff[30];
     14 typedef struct node
     15 {
     16         LL m[2][2];
     17         node()
     18         {
     19                 memset(m,0,sizeof(m));
     20         }
     21 } maxtr;
     22 int f[10000];
     23 int fin(LL n);
     24 LL quick(LL n,LL m,LL mod);
     25 int main(void)
     26 {
     27         memset(prime,0,sizeof(prime));
     28         int i,j;
     29         for(i = 0; i <= 300; i++)
     30         {
     31                 oula[i] = i;
     32         }
     33         int cn = 0;
     34         for(i = 2; i <= 300; i++)
     35         {
     36                 if(!prime[i])
     37                 {
     38                         ans[cn++] = i;
     39                         for(j = i; (i*j) <= 300; j++)
     40                         {
     41                                 prime[i*j] = true;
     42                         }
     43                 }
     44         }//printf("%d
    ",cn);
     45         for(i = 0; i < cn; i++)
     46         {
     47                 for(j = 1; ans[i]*j <= 300; j++)
     48                 {
     49                         oula[ans[i]*j]/=ans[i];
     50                         oula[ans[i]*j]*=(ans[i] - 1);
     51                 }
     52         }
     53         ff[0] = 0;
     54         ff[1] = 1;
     55         for(i = 2; i <= 20; i++)
     56         {
     57                 ff[i] = ff[i-1]+ff[i-2];
     58         }
     59         //printf("%d
    ",ff[20]);
     60         LL A,B,N,C;
     61         int T;
     62         scanf("%d",&T);
     63         int __ca = 0;
     64         while(T--)
     65         {
     66                 scanf("%llu %llu %llu %llu",&A,&B,&N,&C);
     67                 {
     68                         printf("Case %d: ",++__ca);
     69                         if(C == 1)
     70                                 printf("0
    ");
     71                         else
     72                         {
     73                                 int k = fin(C);
     74                                 LL ask = quick(A,B,(LL)k);
     75                                 LL c = (LL)f[ask];
     76                                 if(c == 0)
     77                                         printf("0
    ");
     78                                 else
     79                                 {
     80                                         LL v = A;
     81                                         LL x = B;
     82                                         int flag = 0;
     83                                         {
     84                                                 int u = fin((LL)oula[C]);
     85                                                 LL avk = quick(A,B,(LL)u);
     86                                                 LL app = (LL)f[avk];
     87                                                 LL ni = quick(app,N-1,(LL)oula[C]);
     88                                                 ni = ni + (LL)oula[C];
     89                                                 printf("%llu
    ",quick(c,ni,C));
     90                                         }
     91                                 }
     92                         }
     93                 }
     94         }
     95         return 0;
     96 }
     97 int fin(LL n)
     98 {
     99         f[0] = 0;
    100         f[1] = 1;
    101         int id;
    102         int i;
    103         for(i = 2; i < 5000; i++)
    104         {
    105                 f[i] = f[i-1]+f[i-2];
    106                 f[i]%=n;
    107                 if(f[i] == f[1]&&f[0] == f[i-1])
    108                 {
    109                         id = i-2;
    110                         break;
    111                 }
    112         }//printf("%d
    ",id);
    113         return id+1;
    114 }
    115 LL quick(LL n,LL m,LL mod)
    116 {
    117         LL ak = 1;
    118         n%=mod;
    119         while(m)
    120         {
    121                 if(m&1)
    122                 {
    123                         ak = ak*n%mod;
    124                 }
    125                 n = n*n%mod;
    126                 m/=2;
    127         }
    128         return ak;
    129 }
    油!油!you@
  • 相关阅读:
    现在分词做状语,到,非谓语动词
    成功和失败因素收集
    退拽原理2
    分享到(事件冒泡实例)
    滚动公告(纵向)
    RabbitMQ消息队列(一): Detailed Introduction 详细介绍
    在IDEA中实战Git
    深入浅出JMS(三)--ActiveMQ简单的HelloWorld实例
    MySQL中日期和时间戳互相转换的函数和方法
    【Docker】 windows10 docker 使用
  • 原文地址:https://www.cnblogs.com/zzuli2sjy/p/5918985.html
Copyright © 2011-2022 走看看