zoukankan      html  css  js  c++  java
  • Interesting Fibonacci(hdu 2814)

    Interesting Fibonacci

    Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
    Total Submission(s): 1071    Accepted Submission(s): 229


    Problem Description
    In mathematics, the Fibonacci numbers are a sequence of numbers named after Leonardo of Pisa, known as Fibonacci (a contraction of filius Bonaccio, "son of Bonaccio"). Fibonacci's 1202 book Liber Abaci introduced the sequence to Western European mathematics, although the sequence had been previously described in Indian mathematics.
      The first number of the sequence is 0, the second number is 1, and each subsequent number is equal to the sum of the previous two numbers of the sequence itself, yielding the sequence 0, 1, 1, 2, 3, 5, 8, etc. In mathematical terms, it is defined by the following recurrence relation:

    That is, after two starting values, each number is the sum of the two preceding numbers. The first Fibonacci numbers (sequence A000045 in OEIS), also denoted as F[n];
    F[n] can be calculate exactly by the following two expressions:


    A Fibonacci spiral created by drawing arcs connecting the opposite corners of squares in the Fibonacci tiling; this one uses squares of sizes 1, 1, 2, 3, 5, 8, 13, 21, and 34;

    So you can see how interesting the Fibonacci number is.
    Now AekdyCoin denote a function G(n)

    Now your task is quite easy, just help AekdyCoin to calculate the value of G (n) mod C
     
    Input
    The input consists of T test cases. The number of test cases (T is given in the first line of the input. Each test case begins with a line containing A, B, N, C (10<=A, B<2^64, 2<=N<2^64, 1<=C<=300)
     
    Output
    For each test case, print a line containing the test case number( beginning with 1) followed by a integer which is the value of G(N) mod C
     
    Sample Input
    1 17 18446744073709551615 1998 139
     
    Sample Output
    Case 1: 120
     
    Author
    AekdyCoin
     思路:欧拉函数;
    G(n)= F(a^b)^((F(a^b))^(N-1));然后,找一下数列的循环节,然后应为a^b>300,所以直接用欧拉降幂,((F(a^b)^(N-1))%oula[C] + oula[C]);因为F(a^b)^(N-1) > oula[C];
    这样幂数就就降下来了。
      1 #include<stdio.h>
      2 #include<algorithm>
      3 #include<stdlib.h>
      4 #include<queue>
      5 #include<iostream>
      6 #include<string.h>
      7 #include<math.h>
      8 using namespace std;
      9 typedef unsigned long long LL;
     10 bool prime[400];
     11 int ans[400];
     12 int oula[400];
     13 int ff[30];
     14 typedef struct node
     15 {
     16         LL m[2][2];
     17         node()
     18         {
     19                 memset(m,0,sizeof(m));
     20         }
     21 } maxtr;
     22 int f[10000];
     23 int fin(LL n);
     24 LL quick(LL n,LL m,LL mod);
     25 int main(void)
     26 {
     27         memset(prime,0,sizeof(prime));
     28         int i,j;
     29         for(i = 0; i <= 300; i++)
     30         {
     31                 oula[i] = i;
     32         }
     33         int cn = 0;
     34         for(i = 2; i <= 300; i++)
     35         {
     36                 if(!prime[i])
     37                 {
     38                         ans[cn++] = i;
     39                         for(j = i; (i*j) <= 300; j++)
     40                         {
     41                                 prime[i*j] = true;
     42                         }
     43                 }
     44         }//printf("%d
    ",cn);
     45         for(i = 0; i < cn; i++)
     46         {
     47                 for(j = 1; ans[i]*j <= 300; j++)
     48                 {
     49                         oula[ans[i]*j]/=ans[i];
     50                         oula[ans[i]*j]*=(ans[i] - 1);
     51                 }
     52         }
     53         ff[0] = 0;
     54         ff[1] = 1;
     55         for(i = 2; i <= 20; i++)
     56         {
     57                 ff[i] = ff[i-1]+ff[i-2];
     58         }
     59         //printf("%d
    ",ff[20]);
     60         LL A,B,N,C;
     61         int T;
     62         scanf("%d",&T);
     63         int __ca = 0;
     64         while(T--)
     65         {
     66                 scanf("%llu %llu %llu %llu",&A,&B,&N,&C);
     67                 {
     68                         printf("Case %d: ",++__ca);
     69                         if(C == 1)
     70                                 printf("0
    ");
     71                         else
     72                         {
     73                                 int k = fin(C);
     74                                 LL ask = quick(A,B,(LL)k);
     75                                 LL c = (LL)f[ask];
     76                                 if(c == 0)
     77                                         printf("0
    ");
     78                                 else
     79                                 {
     80                                         LL v = A;
     81                                         LL x = B;
     82                                         int flag = 0;
     83                                         {
     84                                                 int u = fin((LL)oula[C]);
     85                                                 LL avk = quick(A,B,(LL)u);
     86                                                 LL app = (LL)f[avk];
     87                                                 LL ni = quick(app,N-1,(LL)oula[C]);
     88                                                 ni = ni + (LL)oula[C];
     89                                                 printf("%llu
    ",quick(c,ni,C));
     90                                         }
     91                                 }
     92                         }
     93                 }
     94         }
     95         return 0;
     96 }
     97 int fin(LL n)
     98 {
     99         f[0] = 0;
    100         f[1] = 1;
    101         int id;
    102         int i;
    103         for(i = 2; i < 5000; i++)
    104         {
    105                 f[i] = f[i-1]+f[i-2];
    106                 f[i]%=n;
    107                 if(f[i] == f[1]&&f[0] == f[i-1])
    108                 {
    109                         id = i-2;
    110                         break;
    111                 }
    112         }//printf("%d
    ",id);
    113         return id+1;
    114 }
    115 LL quick(LL n,LL m,LL mod)
    116 {
    117         LL ak = 1;
    118         n%=mod;
    119         while(m)
    120         {
    121                 if(m&1)
    122                 {
    123                         ak = ak*n%mod;
    124                 }
    125                 n = n*n%mod;
    126                 m/=2;
    127         }
    128         return ak;
    129 }
    油!油!you@
  • 相关阅读:
    POJ 2752 Seek the Name, Seek the Fame
    POJ 2406 Power Strings
    对闭包的理解(closure)
    HDU
    Python字典遍历的几种方法
    面向对象的六大原则
    Android添加代码检查权限
    Android请求网络权限
    android广播接收器BroadcastReceiver
    Android中SQLite下 Cursor的使用。
  • 原文地址:https://www.cnblogs.com/zzuli2sjy/p/5918985.html
Copyright © 2011-2022 走看看