zoukankan      html  css  js  c++  java
  • PAT甲级——A1119 Pre- and Post-order Traversals【30】

    Suppose that all the keys in a binary tree are distinct positive integers. A unique binary tree can be determined by a given pair of postorder and inorder traversal sequences, or preorder and inorder traversal sequences. However, if only the postorder and preorder traversal sequences are given, the corresponding tree may no longer be unique.

    Now given a pair of postorder and preorder traversal sequences, you are supposed to output the corresponding inorder traversal sequence of the tree. If the tree is not unique, simply output any one of them.

    Input Specification:

    Each input file contains one test case. For each case, the first line gives a positive integer N (≤ 30), the total number of nodes in the binary tree. The second line gives the preorder sequence and the third line gives the postorder sequence. All the numbers in a line are separated by a space.

    Output Specification:

    For each test case, first printf in a line Yes if the tree is unique, or No if not. Then print in the next line the inorder traversal sequence of the corresponding binary tree. If the solution is not unique, any answer would do. It is guaranteed that at least one solution exists. All the numbers in a line must be separated by exactly one space, and there must be no extra space at the end of the line.

    Sample Input 1:

    7
    1 2 3 4 6 7 5
    2 6 7 4 5 3 1
    

    Sample Output 1:

    Yes
    2 1 6 4 7 3 5
    

    Sample Input 2:

    4
    1 2 3 4
    2 4 3 1
    

    Sample Output 2:

    No
    2 1 3 4


     1 #include <iostream>
     2 #include <vector>
     3 using namespace std;
     4 int n, a;
     5 vector<int>preOrder, postOrder, inOrder;
     6 bool flag = true;//表示树的形态不唯一
     7 void getInOrder(int root, int left, int right)
     8 {
     9     if (left >= right)
    10     {
    11         if (left == right)//只有一个节点
    12             inOrder.push_back(preOrder[root]);
    13         return;
    14     }
    15     int i = left;
    16     while (i < right && preOrder[root + 1] != postOrder[i])//查找前序遍历中下一个节点在后序中的位置
    17         ++i;
    18     if (i == right - 1)//先根序列中根节点的下一结点在后根序列中的位置正好等于right-1
    19         flag = false;
    20     getInOrder(root + 1, left, i);
    21     inOrder.push_back(preOrder[root]);
    22     getInOrder(root + i - left + 2, i + 1, right - 1);
    23 }
    24 int main()
    25 {
    26     cin >> n;
    27     for (int i = 0; i < n; ++i)
    28     {
    29         cin >> a;
    30         preOrder.push_back(a);
    31     }
    32     for (int i = 0; i < n; ++i)
    33     {
    34         cin >> a;
    35         postOrder.push_back(a);
    36     }
    37     getInOrder(0, 0, n - 1);
    38     cout << (flag ? "Yes" : "No") << endl;
    39     for (int i = 0; i < n; ++i)
    40         cout << (i > 0 ? " " : "") << inOrder[i];
    41     cout << endl;
    42     return 0;
    43 }
  • 相关阅读:
    C# 文件流
    SQL语句(十八_补充)——存储过程
    SQL语句(十九)——存储过程(练习)
    SQL语句(十八)—— 存储过程
    软件测试(二)PICT的使用 组合测试方法(两两组合测试,可遍历组合测试)
    Swing布局管理器
    软件测试(一)-黑盒测试 随机测试技巧
    (一)在Lingo中使用集合
    数学建模 TSP(旅行商问题) Lingo求解
    哲学家进餐问题
  • 原文地址:https://www.cnblogs.com/zzw1024/p/11462895.html
Copyright © 2011-2022 走看看