题面
题解
一道复杂的期望(dp)
思路来源:__stdcall
容易想到,只要把每张牌打出的概率算出来就可以求出(ans)
设(fp[i])表示把第(i)张牌打出来的概率
可知:(fp[0] = 1-(1-p[0])^r)
(((1-p[0])^r)即一直不打出的概率)
后面的(fp)怎么求?
设(f[i][j])表示前(i)张牌一共出了(j)张的概率, 那么就会有
(fp[i] = sum_{j=0}^{r}f[i-1][j]*(1-(1-p[i])^{r-j}))
((1−(1−p[i])^{r−j})就是在(r−j)轮中使用过第(i)张牌的概率)
那么问题只有如何求(f)了
对于第(i)张牌,只有两种情况:
1.使用
(f[i][j] += f[i-1][j-1]*(1-(1-p[i])^{r-j+1}))
2.不使用
(f[i][j] += f[i-1][j]*(1-p[i])^{r-j})
具体看代码。。
看完题解还是很容易的。。
Code
#include<bits/stdc++.h>
#define LL long long
#define RG register
using namespace std;
template<class T> inline void read(T &x) {
x = 0; RG char c = getchar(); bool f = 0;
while (c != '-' && (c < '0' || c > '9')) c = getchar(); if (c == '-') c = getchar(), f = 1;
while (c >= '0' && c <= '9') x = x*10+c-48, c = getchar();
x = f ? -x : x;
return ;
}
template<class T> inline void write(T x) {
if (!x) {putchar(48);return ;}
if (x < 0) x = -x, putchar('-');
int len = -1, z[20]; while (x > 0) z[++len] = x%10, x /= 10;
for (RG int i = len; i >= 0; i--) putchar(z[i]+48);return ;
}
const int N = 230;
double p[N], fp[N], P[N][N], f[N][N];
int d[N], n, r;
void pre() {
for (int i = 1; i <= n; i++) {
P[i][0] = 1;
for (int j = 1; j <= r; j++)
P[i][j] = P[i][j-1]*(1-p[i]);
}
return ;
}
void solve() {
read(n); read(r);
for (int i = 1; i <= n; i++)
scanf("%lf", &p[i]), read(d[i]);
pre();
memset(f, 0, sizeof(f));
memset(fp, 0, sizeof(fp));
f[1][0] = P[1][r];
f[1][1] = fp[1] = 1-f[1][0];
for (int i = 2; i <= n; i++) {
for (int j = 0; j <= r; j++) {
f[i][j] += f[i-1][j]*P[i][r-j];
if (j) f[i][j] += f[i-1][j-1]*(1-P[i][r-j+1]);
}
}
for (int i = 2; i <= n; i++)
for (int j = 0; j <= r; j++)
fp[i] += f[i-1][j]*(1-P[i][r-j]);
double ans = 0;
for (int i = 1; i <= n; i++)
ans += fp[i]*d[i];
printf("%lf
", ans);
return ;
}
int main() {
int T; read(T);
while (T--) solve();
return 0;
}