题面
题解
(50pts:)显然是(3)进制状压(dp)
(100pts:)
一行一行地考虑
(f[i][j][k])表示前(i)行,有(j)列放了一个,有(k)列放了两个的方案数
转移很显然
Code
#include<bits/stdc++.h>
#define LL long long
#define RG register
using namespace std;
template<class T> inline void read(T &x) {
x = 0; RG char c = getchar(); bool f = 0;
while (c != '-' && (c < '0' || c > '9')) c = getchar(); if (c == '-') c = getchar(), f = 1;
while (c >= '0' && c <= '9') x = x*10+c-48, c = getchar();
x = f ? -x : x;
return ;
}
template<class T> inline void write(T x) {
if (!x) {putchar(48);return ;}
if (x < 0) x = -x, putchar('-');
int len = -1, z[20]; while (x > 0) z[++len] = x%10, x /= 10;
for (RG int i = len; i >= 0; i--) putchar(z[i]+48);return ;
}
const int N = 110, Mod = 9999973;
int n, m;
int f[N][N][N];
void pls(int &x, LL y) {
y %= Mod;
x += y;
if (x >= Mod) x -= Mod;
}
int C(int x) {//C(x, 2)
return x * (x - 1) / 2;
}
int main() {
read(n), read(m);
f[0][0][0] = 1;
for (int i = 0; i < n; i++)//主动转移
for (int j = 0; j <= m; j++)
for (int k = 0; k + j <= m; k++)
if (f[i][j][k]) {
pls(f[i + 1][j][k], f[i][j][k]);
if (m - k - j) pls(f[i + 1][j + 1][k], 1ll * f[i][j][k] * (m - k - j));
if (j) pls(f[i + 1][j - 1][k + 1], 1ll * f[i][j][k] * j);
if (m - k - j > 1) pls(f[i + 1][j + 2][k], 1ll * f[i][j][k] * C(m - k - j));
if (j > 1) pls(f[i + 1][j - 2][k + 2], 1ll * f[i][j][k] * C(j));
if (m - k - j && j) pls(f[i + 1][j][k + 1], 1ll * f[i][j][k] * j * (m - k - j));
}
int ans = 0;
for (int j = 0; j <= m; j++)
for (int k = 0; k + j <= m; k++)
pls(ans, f[n][j][k]);
printf("%d
", ans);
return 0;
}