zoukankan      html  css  js  c++  java
  • POJ 1458 Common Subsequence

    Description

    A subsequence of a given sequence is the given sequence with some elements (possible none) left out. Given a sequence X = < x1, x2, ..., xm > another sequence Z = < z1, z2, ..., zk > is a subsequence of X if there exists a strictly increasing sequence < i1, i2, ..., ik > of indices of X such that for all j = 1,2,...,k, xij = zj. For example, Z = < a, b, f, c > is a subsequence of X = < a, b, c, f, b, c > with index sequence < 1, 2, 4, 6 >. Given two sequences X and Y the problem is to find the length of the maximum-length common subsequence of X and Y.

    Input

    The program input is from the std input. Each data set in the input contains two strings representing the given sequences. The sequences are separated by any number of white spaces. The input data are correct.

    Output

    For each set of data the program prints on the standard output the length of the maximum-length common subsequence from the beginning of a separate line.

    Sample Input

    abcfbc         abfcab
    programming    contest 
    abcd           mnp

    Sample Output

    4
    2
    0

    最长公共子串问题:

     1 #include<stdio.h>
     2 #include<string.h>
     3 #define maxn 1010
     4 
     5 int d[2][maxn];
     6 char a[maxn], b[maxn];
     7 int main()
     8 {
     9     while(scanf("%s %s", a, b) == 2){
    10         int la, lb, i, j;
    11         la = strlen(a);
    12         lb = strlen(b);
    13         memset(d, 0, sizeof(d));
    14         for(i = 1; i <= la; i++)
    15             for(j = 1; j <= lb; j++)
    16                 if(a[i-1] == b[j-1])
    17                     d[i%2][j] = d[(i-1)%2][j-1] + 1;
    18                 else
    19                     d[i%2][j] = d[i%2][j-1] > d[(i-1)%2][j] ? d[i%2][j-1] : d[(i-1)%2][j];//取最大值
    20         printf("%d
    ", d[la%2][lb]);
    21     }
    22     return 0;
    23 }
    
    

    另解:

    POJ 1458 最长公共子列 - 紫儿的LG - 囧囧

     1 #include <stdio.h>
     2 #include <string.h>
     3 #define MAXN 1010
     4 
     5 char X[MAXN];
     6 char Y[MAXN];
     7 int dp[MAXN][MAXN];
     8 int fmax(int a, int b)
     9 {
    10     return a > b ? a : b;
    11 }
    12 
    13 void dpf(int m,int n)
    14 {
    15     int i, j;
    16     for (i = 1; i <= m; i++)
    17         dp[i][0] = 0;
    18     for (i = 1; i <= n; i++)
    19         dp[0][i] = 0;
    20     for (i = 1; i <= m; i++)
    21         for (j = 1; j <= n; j++)
    22             if ( X[i] == Y[j])
    23                 dp[i][j] = dp[i-1][j-1]+1;
    24             else
    25                 dp[i][j] = fmax(dp[i-1][j], dp[i][j-1]);
    26 }
    27 
    28 int main()
    29 {
    30     int m, n;
    31     while(scanf("%s %s", X, Y) == 2){
    32         m = strlen(X);
    33         n = strlen(Y);
    34     memset(dp,0,sizeof(dp));
    35     dpf(m, n);
    36     printf("%d
    ",dp[m][n]);
    37     }
    38     return 0;
    39 }

    关于最长公共子序列的进一步探讨——输出

     1 #include <stdio.h>
     2 #include <string.h>
     3 
     4 int x[100], y[100], c[100][100], b[100][100];
     5 void LcsLength(int *x,int *y,int m,int n,int c[][100],int b[][100])
     6 {
     7     for(int i = 0; i <= m; i++)
     8         c[i][0] = 0;
     9     for(int j = 0; j <= n; j++)
    10         c[0][j] = 0;
    11     for(int i = 1; i <= m; i++)
    12         for(int j = 1; j <= n; j++){
    13             if(x[i-1] == y[j-1]){
    14                 c[i][j] = c[i-1][j-1]+1;
    15                 b[i][j] = 0;
    16             }
    17             else if(c[i-1][j] >= c[i][j-1]){
    18                 c[i][j] = c[i-1][j];
    19                 b[i][j] = 1;
    20             }
    21             else{
    22                 c[i][j] = c[i][j-1];
    23                 b[i][j] = -1;
    24             }
    25         }
    26 }
    27 
    28 void PrintLCS(int b[][100], int *x, int i, int j)
    29 {
    30     if(i == 0 || j == 0)
    31         return;
    32     if(b[i][j] == 0){
    33         PrintLCS(b, x, i-1, j-1);
    34         printf("%d ", x[i-1]);
    35     }
    36     else if(b[i][j] == 1)
    37         PrintLCS(b, x, i-1, j);
    38     else
    39         PrintLCS(b, x, i, j-1);
    40 }
    41 
    42 int main()
    43 {
    44     int m, n;
    45     scanf("%d", &m);
    46     for(int i = 0; i < m; i++)
    47         scanf("%d", &x[i]);
    48     scanf("%d", &n);
    49     for(int i = 0; i < n; i++)
    50         scanf("%d", &y[i]);
    51     LcsLength(x, y, m, n, c, b);
    52     printf("最长子序列为:");
    53     PrintLCS(b, x, m, n);
    54     printf("
    ");
    55     printf("最长子序列长度为:%d
    ", c[m][n]);
    56     return 0;
    57 }
  • 相关阅读:
    模板 无源汇上下界可行流 loj115
    ICPC2018JiaozuoE Resistors in Parallel 高精度 数论
    hdu 2255 奔小康赚大钱 最佳匹配 KM算法
    ICPC2018Beijing 现场赛D Frog and Portal 构造
    codeforce 1175E Minimal Segment Cover ST表 倍增思想
    ICPC2018Jiaozuo 现场赛H Can You Solve the Harder Problem? 后缀数组 树上差分 ST表 口胡题解
    luogu P1966 火柴排队 树状数组 逆序对 离散化
    luogu P1970 花匠 贪心
    luogu P1967 货车运输 最大生成树 倍增LCA
    luogu P1315 观光公交 贪心
  • 原文地址:https://www.cnblogs.com/zzy9669/p/3865958.html
Copyright © 2011-2022 走看看