zoukankan      html  css  js  c++  java
  • 基于mykernel 2.0编写一个操作系统内核

    实验准备(参考https://github.com/mengning/mykernel)

    实验要求:

    1. 按照https://github.com/mengning/mykernel 的说明配置mykernel 2.0,熟悉Linux内核的编译;
    2. 基于mykernel 2.0编写一个操作系统内核,参照https://github.com/mengning/mykernel 提供的范例代码
    3. 简要分析操作系统内核核心功能及运行工作机制

    实验环境:

      Ubuntu版本:ubuntu-18.04.4-desktop-amd64

    配置mykernel 2.0

      配置命令:

    在ubuntu虚拟机中,打开终端,输入如下指令:

    wget https://raw.github.com/mengning/mykernel/master/mykernel-2.0_for_linux-5.4.34.patch
    sudo apt install axel
    axel -n 20 https://mirrors.edge.kernel.org/pub/linux/kernel/v5.x/linux-5.4.34.tar.xz
    xz -d linux-5.4.34.tar.xz //解压
    tar -xvf linux-5.4.34.tar
    cd linux-5.4.34
    patch -p1 < ../mykernel-2.0_for_linux-5.4.34.patch
    sudo apt install build-essential libncurses-dev bison flex libssl-dev libelf-dev
    make defconfig 10 make -j$(nproc) 
    sudo apt install qemu 12 qemu-system-x86_64 -kernel arch/x86/boot/bzImage

    配置成功后结果如下,从qemu窗口中可以看到my_start_kernel在执行:

    同时my_timer_handler时钟中断处理程序周期性执行,my_start_kernel是在mymain.c中循环运行的输出,因为是while(1),它将不断运行输出。

    编写内核

    1.  首先在mykernel目录下增加一个mypcb.h头文件,用来定义进程控制块(Process Control Block),也就是进程结构体的定义。

    主要有进程号、进程状态、分配存储区、保存进程的现场、进程入口等。

    #define MAX_TASK_NUM        4
    #define KERNEL_STACK_SIZE   1024*2
    /* CPU-specific state of this task */
    struct Thread {
        unsigned long        ip;
        unsigned long        sp;
    };
    
    typedef struct PCB{
        int pid;
        volatile long state;    /* -1 unrunnable, 0 runnable, >0 stopped */
        unsigned long stack[KERNEL_STACK_SIZE];
        /* CPU-specific state of this task */
        struct Thread thread;
        unsigned long    task_entry;
        struct PCB *next;
    }tPCB;
    
    void my_schedule(void);

    2.  对mymain.c中的my_start_kernel函数进行修改,并在mymain.c中实现了my_process函数,用来作为进程的代码模拟一个个进程,时间片轮转调度。

    #include <linux/types.h>
    #include <linux/string.h>
    #include <linux/ctype.h>
    #include <linux/tty.h>
    #include <linux/vmalloc.h>
    
    
    #include "mypcb.h"
    
    tPCB task[MAX_TASK_NUM];
    tPCB * my_current_task = NULL;
    volatile int my_need_sched = 0;
    
    void my_process(void);
    
    
    void __init my_start_kernel(void)
    {
        int pid = 0;
        int i;
        /* Initialize process 0*/
        task[pid].pid = pid;
        task[pid].state = 0;/* -1 unrunnable, 0 runnable, >0 stopped */
        task[pid].task_entry = task[pid].thread.ip = (unsigned long)my_process;
        task[pid].thread.sp = (unsigned long)&task[pid].stack[KERNEL_STACK_SIZE-1];
        task[pid].next = &task[pid];
        /*fork more process */
        for(i=1;i<MAX_TASK_NUM;i++)
        {
            memcpy(&task[i],&task[0],sizeof(tPCB));
            task[i].pid = i;
            task[i].thread.sp = (unsigned long)(&task[i].stack[KERNEL_STACK_SIZE-1]);
            task[i].next = task[i-1].next;
            task[i-1].next = &task[i];
        }
        /* start process 0 by task[0] */
        pid = 0;
        my_current_task = &task[pid];
        asm volatile(
            "movq %1,%%rsp
    	"     /* set task[pid].thread.sp to rsp */
            "pushq %1
    	"             /* push rbp */
            "pushq %0
    	"             /* push task[pid].thread.ip */
            "ret
    	"                 /* pop task[pid].thread.ip to rip */
            : 
            : "c" (task[pid].thread.ip),"d" (task[pid].thread.sp)    /* input c or d mean %ecx/%edx*/
        );
    } 
    
    int i = 0;
    
    void my_process(void)
    {    
        while(1)
        {
            i++;
            if(i%10000000 == 0)
            {
                printk(KERN_NOTICE "this is process %d -
    ",my_current_task->pid);
                if(my_need_sched == 1)
                {
                    my_need_sched = 0;
                    my_schedule();
                }
                printk(KERN_NOTICE "this is process %d +
    ",my_current_task->pid);
            }     
        }
    }

    在my_process函数的while循环里面可见,会不断检测全局变量my_need_sched的值,当my_need_sched的值从0变成1的时候,就需要发生进程调度,全局变量my_need_sched重新置为0,执行my_schedule()函数进行进程切换。

    3.对myinterrupt.c的修改,my_timer_handler用来记录时间片,时间片消耗完之后完成调度。并在该文件中完成,my_schedule(void)函数的实现

    #include <linux/types.h>
    #include <linux/string.h>
    #include <linux/ctype.h>
    #include <linux/tty.h>
    #include <linux/vmalloc.h>
    
    #include "mypcb.h"
    
    extern tPCB task[MAX_TASK_NUM];
    extern tPCB * my_current_task;
    extern volatile int my_need_sched;
    volatile int time_count = 0;
    
    /*
     * Called by timer interrupt.
     * it runs in the name of current running process,
     * so it use kernel stack of current running process
     */
    void my_timer_handler(void)
    {
        if(time_count%1000 == 0 && my_need_sched != 1)
        {
            printk(KERN_NOTICE ">>>my_timer_handler here<<<
    ");
            my_need_sched = 1;
        } 
        time_count ++ ;  
        return;      
    }
    
    void my_schedule(void)
    {
        tPCB * next;
        tPCB * prev;
    
        if(my_current_task == NULL 
            || my_current_task->next == NULL)
        {
            return;
        }
        printk(KERN_NOTICE ">>>my_schedule<<<
    ");
        /* schedule */
        next = my_current_task->next;
        prev = my_current_task;
        if(next->state == 0)/* -1 unrunnable, 0 runnable, >0 stopped */
        {        
            my_current_task = next; 
            printk(KERN_NOTICE ">>>switch %d to %d<<<
    ",prev->pid,next->pid);  
            /* switch to next process */
            asm volatile(    
                "pushq %%rbp
    	"         /* save rbp of prev */
                "movq %%rsp,%0
    	"     /* save rsp of prev */
                "movq %2,%%rsp
    	"     /* restore  rsp of next */
                "movq $1f,%1
    	"       /* save rip of prev */    
                "pushq %3
    	" 
                "ret
    	"                 /* restore  rip of next */
                "1:	"                  /* next process start here */
                "popq %%rbp
    	"
                : "=m" (prev->thread.sp),"=m" (prev->thread.ip)
                : "m" (next->thread.sp),"m" (next->thread.ip)
            ); 
        }  
        return;    
    }

    4.重新编译运行内核后,效果如下图所示

    简要分析操作系统内核核心功能及运行工作机制

    操作系统运行工作机制:操作系统中的进程在执⾏过程中,当进程的一个时间⽚⽤完操作系统需要进⾏进程切换时,需要先保存当前的进程上下⽂环境,下次进程被调度执⾏时,需要恢复进程上下⽂环境。我们通过Linux内核代码模拟 了⼀个具有时钟中断和C代码执⾏环境的硬件平台,mymain.c中的代码在不停地执⾏。同时有⼀个中断处理程序的上下⽂环境,周期性地产⽣的时钟中断信号,能够触发myinterrupt.c中的代码,产生进程切换。

     

    asm volatile(    
                "pushq %%rbp
    	"         /* save rbp of prev */
                "movq %%rsp,%0
    	"     /* save rsp of prev */
                "movq %2,%%rsp
    	"     /* restore  rsp of next */
                "movq $1f,%1
    	"       /* save rip of prev */    
                "pushq %3
    	" 
                "ret
    	"                 /* restore  rip of next */
                "1:	"                  /* next process start here */
                "popq %%rbp
    	"
                : "=m" (prev->thread.sp),"=m" (prev->thread.ip)
                : "m" (next->thread.sp),"m" (next->thread.ip)
            );

    pushq %%rbp: 保存prev进程当前RBP寄存器的值到堆栈;

    movq %%rsp,%0 :保存prev进程当前RSP寄存器的值到prev->thread.sp,这时RSP寄存器指向进程的栈顶地址,实际上就是将prev进程的栈顶地址保存;

    movq %2,%%rsp: 将next进程的栈顶地址next->thread.sp放⼊RSP寄存器,完成了进程0和进程1的堆栈切换。

    movq $1f,%1 :保存prev进程当前RIP寄存器值到prev->thread.ip,这⾥$1f是指标号1。

    pushq %3 :把即将执⾏的next进程的指令地址next->thread.ip⼊栈,这时的next->thread.ip可能是进程1的起点my_process(void)函数,也可能是$1f(标号1)。第⼀次被执⾏从头开始为进程1的起点my_process(void)函数,其余的情况均为$1f(标号1),因为next进程如果之前运⾏过那么它就⼀定曾经也作为prev进程被进程切换过。rip寄存器程序员没有权限进行写入,需要多一个步骤

    ret :就是将压⼊栈中的next->thread.ip放⼊RIP寄存器,

    1: 标号1是⼀个特殊的地址位置,该位置的地址是$1f。

    popq %%rbp :将next进程堆栈基地址从堆栈中恢复到RBP寄存器中。

    自此,就完成了进程与进程的切换,其他两个相邻进程的切换过程也和这个相同。

  • 相关阅读:
    推荐体系算法总结
    Springboot 多模块调用,找不到注入的类
    LRU算法
    在SQLServer中连接另一个SQLServer库数据,在Oracle中连接另一个Oracle库数据,在SQL Server中连接Oracle数据,在Oracle中连接SQL Server数据
    用C#实现木马程序
    CSS filter 滤镜可视化配置
    微信小程序农历日期选择器 lunarpicker
    ms Sql 数据库出现 “提供的统计信息流已损坏”的解决办法。
    自制《要塞:十字军东征》无限金钱修改器
    c#+Winform实现自定义的“复制、粘贴”右键快捷菜单,多个控件共享使用一个右键菜单。
  • 原文地址:https://www.cnblogs.com/zzydexiaowu/p/12876240.html
Copyright © 2011-2022 走看看