zoukankan      html  css  js  c++  java
  • codeforce895B

    While Vasya finished eating his piece of pizza, the lesson has already started. For being late for the lesson, the teacher suggested Vasya to solve one interesting problem. Vasya has an array a and integer x. He should find the number of different ordered pairs of indexes (i, j) such that ai ≤ aj and there are exactly k integers y such that ai ≤ y ≤ aj and y is divisible by x.

    In this problem it is meant that pair (i, j) is equal to (j, i) only if i is equal to j. For example pair (1, 2) is not the same as (2, 1).

    Input

    The first line contains 3 integers n, x, k (1 ≤ n ≤ 105, 1 ≤ x ≤ 109, 0 ≤ k ≤ 109), where n is the size of the array a and x and k are numbers from the statement.

    The second line contains n integers ai (1 ≤ ai ≤ 109) — the elements of the array a.

    Output

    Print one integer — the answer to the problem.

    Example

    Input
    4 2 1
    1 3 5 7
    Output
    3
    Input
    4 2 0
    5 3 1 7
    Output
    4
    Input
    5 3 1
    3 3 3 3 3
    Output
    25

    Note

    In first sample there are only three suitable pairs of indexes — (1, 2), (2, 3), (3, 4).

    In second sample there are four suitable pairs of indexes(1, 1), (2, 2), (3, 3), (4, 4).

    In third sample every pair (i, j) is suitable, so the answer is 5 * 5 = 25.

    #include <cstdio>
    #include <iostream>
    #include <string.h>
    #include <cmath>
    #include <algorithm>
    
    #define LL long long
    using namespace std;
    
    LL a[100000+10];
    int main()
    {
        int n,x,k;
        LL result = 0;
        while(scanf("%d",&n)!=EOF)
        {
            scanf("%d%d",&x,&k);
            result = 0;
            for(int i=1;i<=n;i++)cin>>a[i];
            sort(a+1,a+n+1);
            for(int i=1;i<=n;i++)
            {
                LL l = max(a[i],(k+((a[i]-1)/x))*x);
                LL r = max(a[i],(k+1+((a[i]-1)/x))*x);
                //cout<<l;
                //printf("    ");
                //cout<<r<<endl;
                result += (lower_bound(a+1,a+n+1,r)-lower_bound(a+1,a+n+1,l));
            }
            printf("%lld
    ",result);
        }
    
        return 0;
    }
    //2   6 13   6-(3-1)
    //6 8 10 12
    //(k+((a[i]-1)/x))*x=a[j];
    //a[j]/x-(a[i]-1)/x == k+1?
  • 相关阅读:
    bzoj2434: [Noi2011]阿狸的打字机
    bzoj2830: [Shoi2012]随机树
    题解,作业*2
    bzoj1901: Zju2112 Dynamic Rankings
    luogu P4178 Tree
    CF1042C Array Product 分类讨论+贪心
    CF946D Timetable 动态规划
    CF597C Subsequences 树状数组 + 动态规划
    CF912D Fishes 期望 + 贪心
    bzoj 4321 queue2 dp
  • 原文地址:https://www.cnblogs.com/--lr/p/7922647.html
Copyright © 2011-2022 走看看