Perf介绍
系统级性能优化通常包括两个阶段:性能剖析(performance profiling)和代码优化。性能剖析的目标是寻找性能瓶颈,查找引发性能问题的原因及热点代码。代码优化的目标是针对具体性能问题而优化代码或编译选项,以改善软件性能。本篇主要讲性能分析中常用的工具——perf。
perf是一款Linux性能分析工具。
它基于事件采样原理,以性能事件为基础,支持针对处理器相关性能指标与操作系统相关性能指标的性能剖析。常用于性能瓶颈的查找与热点代码的定位。
Linux性能计数器是一个新的基于内核的子系统,它提供一个性能分析框架,比如硬件(CPU、PMU(Performance Monitoring Unit))功能和软件(软件计数器、tracepoint)功能。通过perf,应用程序可以利用PMU、tracepoint和内核中的计数器来进行性能统计。它不但可以分析制定应用程序的性能问题(per thread),也可以用来分析内核的性能问题。
总之perf是一款很牛逼的综合性分析工具,大到系统全局性性能,再小到进程线程级别,甚至到函数及汇编级别。
Perf基本原理
perf的基本原理都是对被监测对象进行采样,最简单的情形是根据 tick 中断进行采样,即在 tick 中断内触发采样点,在采样点里判断程序当时的上下文。
事件分为以下三种:
1)Hardware Event 是由 PMU 硬件产生的事件,比如 cache 命中,当您需要了解程序对硬件特性的使用情况时,便需要对这些事件进行采样;
2)Software Event 是内核软件产生的事件,比如进程切换,tick 数等 ;
3)Tracepoint event 是内核中的静态 tracepoint 所触发的事件,这些 tracepoint 用来判断程序运行期间内核的行为细节,比如 slab 分配器的分配次数等。
CPU周期(cpu-cycles)是默认的性能事件,所谓的CPU周期是指CPU所能识别的最小时间单元,通常为亿分之几秒,是CPU执行最简单的指令时所需要的时间,例如读取寄存器中的内容,也叫做clock tick。
Perf使用
Perf是一个包含23种子工具的工具集序号 | 命令 | 作用 |
1 | annotate | 解析perf record生成的perf.data文件,显示被注释的代码。 |
2 | archive | 根据数据文件记录的build-id,将所有被采样到的elf文件打包。利用此压缩包,可以再任何机器上分析数据文件中记录的采样数据。 |
3 | bench | perf中内置的benchmark,目前包括两套针对调度器和内存管理子系统的benchmark。 |
4 | buildid-cache | 管理perf的buildid缓存,每个elf文件都有一个独一无二的buildid。buildid被perf用来关联性能数据与elf文件。 |
5 | buildid-list | 列出数据文件中记录的所有buildid。 |
6 | diff | 对比两个数据文件的差异。能够给出每个符号(函数)在热点分析上的具体差异。 |
7 | evlist | 列出数据文件perf.data中所有性能事件。 |
8 | inject | 该工具读取perf record工具记录的事件流,并将其定向到标准输出。在被分析代码中的任何一点,都可以向事件流中注入其它事件。 |
9 | kmem | 针对内核内存(slab)子系统进行追踪测量的工具 |
10 | kvm | 用来追踪测试运行在KVM虚拟机上的Guest OS。 |
11 | list | 列出当前系统支持的所有性能事件。包括硬件性能事件、软件性能事件以及检查点。 |
12 | lock | 分析内核中的锁信息,包括锁的争用情况,等待延迟等。 |
13 | mem | 内存存取情况 |
14 | record | 收集采样信息,并将其记录在数据文件中。随后可通过其它工具对数据文件进行分析。 |
15 | report | 读取perf record创建的数据文件,并给出热点分析结果。 |
16 | sched | 针对调度器子系统的分析工具。 |
17 | 执行perl或python写的功能扩展脚本、生成脚本框架、读取数据文件中的数据信息等。 | |
18 | stat | 执行某个命令,收集特定进程的性能概况,包括CPI、Cache丢失率等。 |
19 | test | perf对当前软硬件平台进行健全性测试,可用此工具测试当前的软硬件平台是否能支持perf的所有功能。 |
20 | timechart | 针对测试期间系统行为进行可视化的工具 |
21 | top | 类似于linux的top命令,对系统性能进行实时分析。 |
22 | trace | 关于syscall的工具。 |
23 | probe | 用于定义动态检查点。 |
全局性概况:
perf list查看当前系统支持的性能事件;
perf bench对系统性能进行摸底;
perf test对系统进行健全性测试;
perf stat对全局性能进行统计;
全局细节:
perf top可以实时查看当前系统进程函数占用率情况;
perf probe可以自定义动态事件;
特定功能分析:
perf kmem针对slab子系统性能分析;
perf kvm针对kvm虚拟化分析;
perf lock分析锁性能;
perf mem分析内存slab性能;
perf sched分析内核调度器性能;
perf trace记录系统调用轨迹;
最常用功能perf record,可以系统全局,也可以具体到某个进程,更甚具体到某一进程某一事件;可宏观,也可以很微观。
pref record记录信息到perf.data;
perf report生成报告;
perf diff对两个记录进行diff;
perf evlist列出记录的性能事件;
perf annotate显示perf.data函数代码;
perf archive将相关符号打包,方便在其它机器进行分析;
perf 将perf.data输出可读性文本;
可视化工具perf timechart
perf timechart record记录事件;
perf timechart生成output.svg文档;
以下是最常用的5种
perf top 类似系统命令 查看消耗cpu比较高的内核函数或者进程
对于一个指定的性能事件(默认是CPU周期),显示消耗最多的函数或指令。
System profiling tool.
Generates and displays a performance counter profile in real time.
perf top [-e | --event=EVENT] []
perf top主要用于实时分析各个函数在某个性能事件上的热度,能够快速的定位热点函数,包括应用程序函数、
模块函数与内核函数,甚至能够定位到热点指令。默认的性能事件为cpu cycles。
使用例子
1、实时显示占用 CPU 时钟最多的函数或者指令(可以用来查找热点函数)
$ perf top Samples: 833 of event 'cpu-clock', Event count (approx.): 97742399 Overhead Shared Object Symbol 7.28% perf [.] 0x00000000001f78a4 4.72% [kernel] [k] vsnprintf 4.32% [kernel] [k] module_get_kallsym 3.65% [kernel] [k] _raw_spin_unlock_irqrestore ...
输出结果中,第一行包含三个数据,
- 分别是采样数(Samples)
- 事件类型(event)
- 事件总数量(Event count)。
比如这个例子中,perf 总共采集了 833 个 CPU 时钟事件,而总事件数则为 97742399。
- 第一列 Overhead ,是该符号的性能事件在所有采样中的比例,用百分比来表示。
- 第二列 Shared ,是该函数或指令所在的动态共享对象(Dynamic Shared Object),如内核、进程名、动态链接库名、内核模块名等。
- 第三列 Object ,是动态共享对象的类型。比如 [.] 表示用户空间的可执行程序、或者动态链接库,而 [k] 则表示内核空间。
- 最后一列 Symbol 是符号名,也就是函数名。当函数名未知时,用十六进制的地址来表示。
2、-g开启调用关系分析,-p指定的进程号21515
# perf top -g -p 21515
注意:使用方向键切换进程,再按下回车键展开某个进程的调用关系。
perf list 列出perf支持的事件
Perf ist用来查看perf所支持的性能事件,有软件的也有硬件的。
List all symbolic event types.
perf list [hw | sw | cache | tracepoint | event_glob]
性能事件的分布
hw:Hardware event,9个
sw:Software event,9个
cache:Hardware cache event,26个
tracepoint:Tracepoint event,775个
sw实际上是内核的计数器,与硬件无关。
hw和cache是CPU架构相关的,依赖于具体硬件。
tracepoint是基于内核的ftrace,主线2.6.3x以上的内核版本才支持。
指定性能事件(以它的属性)
-e : u // userspace
-e : k // kernel
-e : h // hypervisor
-e : G // guest counting (in KVM guests)
-e : H // host counting (not in KVM guests)
使用例子
1、显示内核和模块中,消耗最多CPU周期的函数:
# perf top -e cycles:k
2、显示分配高速缓存最多的函数:
# perf top -e kmem:kmem_cache_alloc
perf stat 统计profiling进程的各种信息
用于分析指定程序的性能概况。
Run a command and gather performance counter statistics.
perf stat [-e | --event=EVENT] [-a]
perf stat [-e | --event=EVENT] [-a] - []
输出格式
# perf stat ls
输出包括ls的执行时间,以及10个性能事件的统计。
task-clock:任务真正占用的处理器时间,单位为ms。CPUs utilized = task-clock / time elapsed,CPU的占用率。
context-switches:上下文的切换次数。
CPU-migrations:处理器迁移次数。Linux为了维持多个处理器的负载均衡,在特定条件下会将某个任务从一个CPU
迁移到另一个CPU。
page-faults:缺页异常的次数。当应用程序请求的页面尚未建立、请求的页面不在内存中,或者请求的页面虽然在内
存中,但物理地址和虚拟地址的映射关系尚未建立时,都会触发一次缺页异常。另外TLB不命中,页面访问权限不匹配
等情况也会触发缺页异常。
cycles:消耗的处理器周期数。如果把被ls使用的cpu cycles看成是一个处理器的
可以用cycles / task-clock算出。
stalled-cycles-frontend:略过。
stalled-cycles-backend:略过。
instructions:执行了多少条指令。IPC为平均每个cpu cycle执行了多少条指令。
branches:遇到的分支指令数。branch-misses是预测错误的分支指令数。
常用参数
-p:stat events on existing process id (comma separated list). 仅分析目标进程及其创建的线程。
-a:system-wide collection from all CPUs. 从所有CPU上收集性能数据。
-r:repeat command and print average + stddev (max: 100). 重复执行命令求平均。
-C:Count only on the list of CPUs provided (comma separated list), 从指定CPU上收集性能数据。
-v:be more verbose (show counter open errors, etc), 显示更多性能数据。
-n:null run - don't start any counters,只显示任务的执行时间 。
-x SEP:指定输出列的分隔符。
-o file:指定输出文件,--append指定追加模式。
--pre :执行目标程序前先执行的程序。
--post :执行目标程序后再执行的程序。
使用例子
1、执行10次程序,给出标准偏差与期望的比值:
# perf stat -r 10 ls > /dev/null
2、显示更详细的信息:
# perf stat -v ls > /dev/null
3、只显示任务执行时间,不显示性能计数器:
# perf stat -n ls > /dev/null
4、单独给出每个CPU上的信息:
# perf stat -a -A ls > /dev/null
5、ls命令执行了多少次系统调用:
# perf stat -e syscalls:sys_enter ls
perf record profiling进程的数据,并生成 xx.data文件(默认在执行命令的路径下)
收集采样信息,并将其记录在数据文件中。
随后可以通过其它工具(perf-report)对数据文件进行分析,结果类似于perf-top的。
常用参数
-e:Select the PMU event.
-a:System-wide collection from all CPUs.
-p:Record events on existing process ID (comma separated list).
-A:Append to the output file to do incremental profiling.
-f:Overwrite existing data file.
-o:Output file name.
-g:Do call-graph (stack chain/backtrace) recording.
-C:Collect samples only on the list of CPUs provided.
使用例子
1、记录性能事件,等待大约15秒后按 Ctrl+C 退出
# perf record -g
2、记录nginx进程的性能数据:
# perf record -p `pgrep -d ',' nginx`
3、记录执行ls时的性能数据:
# perf record ls -g
4、记录执行ls时的系统调用,可以知道哪些系统调用最频繁:
# perf record -e syscalls:sys_enter ls
perf report 读取xx.data文件
perf record -e cpu-clock -g -p 4522
使用ctrl+c中断perf进程,或者在程序执行结束后,会产生perf.data的文件,使用report会产生结果分析,如图perf report
上面通过文件查看不够直观,还有一种火焰图分析的方式:
工具下载:git clone https://github.com/brendangregg/FlameGraph.git
使用命令:
使用perf script工具对perf.data进行解析perf script -i perf.data &> perf.unfold
将perf.unfold中的符号进行折叠:/data/stackcollapse-perf.pl perf.unfold &> perf.folded
最后生成svg图:/data/flamegraph.pl perf.folded > perf.svg
然后可以通过chrome或者看图软件打开:
Y轴表示调用栈,X轴越宽,就表示它被抽到的次数多,即执行的时间长。注意,x 轴不代表时间,而是所有的调用栈合并后,按字母顺序排列的。
所以,一般我们只需要看有没有出现 “平顶”,如果有,那么这个函数可能有性能问题。