zoukankan      html  css  js  c++  java
  • Brackets (区间DP)

    Brackets

     POJ - 2955 

    We give the following inductive definition of a “regular brackets” sequence:

    • the empty sequence is a regular brackets sequence,
    • if s is a regular brackets sequence, then (s) and [s] are regular brackets sequences, and
    • if a and b are regular brackets sequences, then ab is a regular brackets sequence.
    • no other sequence is a regular brackets sequence

    For instance, all of the following character sequences are regular brackets sequences:

    (), [], (()), ()[], ()[()]

    while the following character sequences are not:

    (, ], )(, ([)], ([(]

    Given a brackets sequence of characters a1a2 … an, your goal is to find the length of the longest regular brackets sequence that is a subsequence of s. That is, you wish to find the largest m such that for indices i1i2, …, im where 1 ≤ i1 < i2 < … < im ≤ nai1ai2 … aim is a regular brackets sequence.

    Given the initial sequence ([([]])], the longest regular brackets subsequence is [([])].

    Input

    The input test file will contain multiple test cases. Each input test case consists of a single line containing only the characters ()[, and ]; each input test will have length between 1 and 100, inclusive. The end-of-file is marked by a line containing the word “end” and should not be processed.

    Output

    For each input case, the program should print the length of the longest possible regular brackets subsequence on a single line.

    Sample Input

    ((()))
    ()()()
    ([]])
    )[)(
    ([][][)
    end

    Sample Output

    6
    6
    4
    0
    6
    题意:
      给出一个字符串,问该字符串中括号的最大的匹配是多少()为一对括号的匹配,[]为一对括号的匹配。
    题解:
      区间DP
      dp[i][j]表示i-j这个区间中括号的最大匹配数,可知对于每一个区间来说,初值为如果s[i] s[j]恰好可以匹配,那么dp[i][j]=dp[i+1][j-1]+2,如果不匹配,那么dp[i][j]=dp[i+1][j-1];
    然后遍历区间断点K,求最大值。
     1 #include<iostream>
     2 #include<cstdio>
     3 #include<cstring>
     4 #include<algorithm>
     5 using namespace std;
     6 char s[110];
     7 int dp[110][110];
     8 int main()
     9 {
    10     while(~scanf("%s",s))
    11     {
    12         if(s[0]=='e')
    13             break;
    14         memset(dp,0,sizeof(dp));
    15         int n=strlen(s);
    16         for(int len=1;len<=n;len++)
    17         {
    18             for(int l=0;l+len<n;l++)
    19             {
    20                 int r=l+len;
    21                 if((s[l]=='('&&s[r]==')')||(s[l]=='['&&s[r]==']'))
    22                     dp[l][r]=dp[l+1][r-1]+2;
    23                 for(int k=l;k<r;k++)
    24                     dp[l][r]=max(dp[l][r],dp[l][k]+dp[k+1][r]);
    25             }
    26         }
    27         printf("%d
    ",dp[0][n-1]);
    28     }
    29 } 
  • 相关阅读:
    C# 之委托
    Java Maven安装及配置,利用Maven创建项目
    Java DecimalFormat四舍五入的坑及正确用法
    Java 解析XML的几种方式:DOM、SAX、JDOM和DOM4J。
    Java Properties配置文件和XML配置文件读取
    Java Map一些基本使用方法
    JAVA for循环的几种用法
    鼠标及键盘操作
    控制浏览器
    元素定位
  • 原文地址:https://www.cnblogs.com/1013star/p/10065147.html
Copyright © 2011-2022 走看看