zoukankan      html  css  js  c++  java
  • Almost Arithmetical Progression(dp)

    Almost Arithmetical Progression

     CodeForces - 255C 

    Gena loves sequences of numbers. Recently, he has discovered a new type of sequences which he called an almost arithmetical progression. A sequence is an almost arithmetical progression, if its elements can be represented as:

    • a1 = p, where p is some integer;
    • ai = ai - 1 + ( - 1)i + 1·q (i > 1), where q is some integer.

    Right now Gena has a piece of paper with sequence b, consisting of n integers. Help Gena, find there the longest subsequence of integers that is an almost arithmetical progression.

    Sequence s1,  s2,  ...,  sk is a subsequence of sequence b1,  b2,  ...,  bn, if there is such increasing sequence of indexes i1, i2, ..., ik (1  ≤  i1  <  i2  < ...   <  ik  ≤  n), that bij  =  sj. In other words, sequence s can be obtained from b by crossing out some elements.

    Input

    The first line contains integer n (1 ≤ n ≤ 4000). The next line contains n integers b1, b2, ..., bn (1 ≤ bi ≤ 106).

    Output

    Print a single integer — the length of the required longest subsequence.

    Examples

    Input
    2
    3 5
    Output
    2
    Input
    4
    10 20 10 30
    Output
    3

    Note

    In the first test the sequence actually is the suitable subsequence.

    In the second test the following subsequence fits: 10, 20, 10.

    题意:找一个最长的锯齿形子串 例如10 30 10 30 10

    思路:%大佬%大佬%大佬 大佬tql 

        因为数据在1e6而n只有4000,所以大佬说可以先搞一波离散化,然后开二维dp。dp[x][y]中x表示当前数的位置,y表示x这个位置上的数字前面的数,例如1 4 1 4 dp[3][4]代表当数字为1且其前面的数字为4时的最大子串长度。dp[3][4]=dp[2][1]+1,具体看代码。

     1 #include<iostream>
     2 #include<cstdio>
     3 #include<cstring>
     4 #include<algorithm>
     5 using namespace std;
     6 const int maxn=4010;
     7 int a[maxn],id[maxn],b[maxn];
     8 int dp[maxn][maxn];
     9 int n;
    10 int main()
    11 {
    12     scanf("%d",&n);
    13     for(int i=1;i<=n;i++)
    14     {
    15         scanf("%d",&a[i]);
    16         id[i]=a[i];    
    17     }
    18     sort(id+1,id+1+n);
    19     int len=unique(id+1,id+1+n)-(id+1);
    20     for(int i=1;i<=n;i++)
    21     {
    22         a[i]=lower_bound(id+1,id+1+n,a[i])-id;
    23     }
    24     int ans=0;
    25     for(int i=1;i<=n;i++)
    26     {
    27         for(int j=1;j<i;j++)
    28         {
    29             dp[i][a[j]]=dp[j][a[i]]+1;
    30             ans=max(ans,dp[i][a[j]]);
    31         }
    32     }
    33     printf("%d
    ",ans+1);
    34     return 0;
    35 }
  • 相关阅读:
    React 组件的生命周期方法
    Ant Design 错误记录与常用例子
    roadhog中如何拷贝文件
    API加密框架monkey-api-encrypt发布1.2版本
    必杀技:当报错信息看不出原因时,怎么办?
    当Spring Cloud Alibaba Sentinel碰上Spring Cloud Sleuth会擦出怎样的火花
    Kitty-Cloud服务搭建过程剖析
    Maven快照版本要这样用才真的香!
    Kitty-Cloud环境准备
    双剑合璧的开源项目Kitty-Cloud
  • 原文地址:https://www.cnblogs.com/1013star/p/9942085.html
Copyright © 2011-2022 走看看