zoukankan      html  css  js  c++  java
  • CUDA ---- Warp解析

    Warp

    逻辑上,所有thread是并行的,但是,从硬件的角度来说,实际上并不是所有的thread能够在同一时刻执行,接下来我们将解释有关warp的一些本质。

    Warps and Thread Blocks

    warp是SM的基本执行单元。一个warp包含32个并行thread,这32个thread执行于SMIT模式。也就是说所有thread执行同一条指令,并且每个thread会使用各自的data执行该指令。

    block可以是一维二维或者三维的,但是,从硬件角度看,所有的thread都被组织成一维,每个thread都有个唯一的ID(ID的计算可以在之前的博文查看)。

    每个block的warp数量可以由下面的公式计算获得:

     

    一个warp中的线程必然在同一个block中,如果block所含线程数目不是warp大小的整数倍,那么多出的那些thread所在的warp中,会剩余一些inactive的thread,也就是说,即使凑不够warp整数倍的thread,硬件也会为warp凑足,只不过那些thread是inactive状态,需要注意的是,即使这部分thread是inactive的,也会消耗SM资源。

     

    Warp Divergence

    控制流语句普遍存在于各种编程语言中,GPU支持传统的,C-style,显式控制流结构,例如if…else,for,while等等。

    CPU有复杂的硬件设计可以很好的做分支预测,即预测应用程序会走哪个path。如果预测正确,那么CPU只会有很小的消耗。和CPU对比来说,GPU就没那么复杂的分支预测了(CPU和GPU这方面的差异的原因不是我们关心的,了解就好,我们关心的是由这差异引起的问题)。

    这样我们的问题就来了,因为所有同一个warp中的thread必须执行相同的指令,那么如果这些线程在遇到控制流语句时,如果进入不同的分支,那么同一时刻除了正在执行的分之外,其余分支都被阻塞了,十分影响性能。这类问题就是warp divergence。

    请注意,warp divergence问题只会发生在同一个warp中。

    下图展示了warp divergence问题:

    为了获得最好的性能,就需要避免同一个warp存在不同的执行路径。避免该问题的方法很多,比如这样一个情形,假设有两个分支,分支的决定条件是thread的唯一ID的奇偶性:

    __global__ void mathKernel1(float *c) {
        int tid = blockIdx.x * blockDim.x + threadIdx.x;
        float a, b;
        a = b = 0.0f;
        if (tid % 2 == 0) {
            a = 100.0f;
        } else {
            b = 200.0f;
        }
        c[tid] = a + b;
    }                        

    一种方法是,将条件改为以warp大小为步调,然后取奇偶,如下:

    __global__ void mathKernel2(void) {
        int tid = blockIdx.x * blockDim.x + threadIdx.x;
        float a, b;
        a = b = 0.0f;
        if ((tid / warpSize) % 2 == 0) {
            a = 100.0f;
        } else {
            b = 200.0f;
        }
        c[tid] = a + b;
    }                    

    代码:

    int main(int argc, char **argv) {
    // set up device
    int dev = 0;
    cudaDeviceProp deviceProp;
    cudaGetDeviceProperties(&deviceProp, dev);
    printf("%s using Device %d: %s
    ", argv[0],dev, deviceProp.name);
    // set up data size
    int size = 64;
    int blocksize = 64;
    if(argc > 1) blocksize = atoi(argv[1]);
    if(argc > 2) size = atoi(argv[2]);
    printf("Data size %d ", size);
    // set up execution configuration
    dim3 block (blocksize,1);
    dim3 grid ((size+block.x-1)/block.x,1);
    printf("Execution Configure (block %d grid %d)
    ",block.x, grid.x);
    // allocate gpu memory
    float *d_C;
    size_t nBytes = size * sizeof(float);
    cudaMalloc((float**)&d_C, nBytes);
    // run a warmup kernel to remove overhead
    size_t iStart,iElaps;
    cudaDeviceSynchronize();
    iStart = seconds();
    warmingup<<<grid, block>>> (d_C);
    cudaDeviceSynchronize();
    iElaps = seconds() - iStart;
    printf("warmup <<< %4d %4d >>> elapsed %d sec 
    ",grid.x,block.x, iElaps );
    // run kernel 1
    iStart = seconds();
    mathKernel1<<<grid, block>>>(d_C);
    cudaDeviceSynchronize();
    iElaps = seconds() - iStart;
    printf("mathKernel1 <<< %4d %4d >>> elapsed %d sec 
    ",grid.x,block.x,iElaps );
    // run kernel 3
    iStart = seconds();
    mathKernel2<<<grid, block>>>(d_C);
    cudaDeviceSynchronize();
    iElaps = seconds () - iStart;
    printf("mathKernel2 <<< %4d %4d >>> elapsed %d sec 
    ",grid.x,block.x,iElaps );
    // run kernel 3
    iStart = seconds ();
    mathKernel3<<<grid, block>>>(d_C);
    cudaDeviceSynchronize();
    iElaps = seconds () - iStart;
    printf("mathKernel3 <<< %4d %4d >>> elapsed %d sec 
    ",grid.x,block.x,iElaps);
    // run kernel 4
    iStart = seconds ();
    mathKernel4<<<grid, block>>>(d_C);
    cudaDeviceSynchronize();
    iElaps = seconds () - iStart;
    printf("mathKernel4 <<< %4d %4d >>> elapsed %d sec 
    ",grid.x,block.x,iElaps);
    // free gpu memory and reset divece
    cudaFree(d_C);
    cudaDeviceReset();
    return EXIT_SUCCESS;
    }
    View Code

    编译运行:

    $ nvcc -O3 -arch=sm_20 simpleDivergence.cu -o simpleDivergence
    $./simpleDivergence

    输出:

    $ ./simpleDivergence using Device 0: Tesla M2070
    Data size 64 Execution Configuration (block 64 grid 1)
    Warmingup elapsed 0.000040 sec
    mathKernel1 elapsed 0.000016 sec
    mathKernel2 elapsed 0.000014 sec

    我们也可以直接使用nvprof(之后会详细介绍)这个工具来度量性能:

    $ nvprof --metrics branch_efficiency ./simpleDivergence

    输出为:

    Kernel: mathKernel1(void)
    1 branch_efficiency Branch Efficiency 100.00% 100.00% 100.00%
    Kernel: mathKernel2(void)
    1 branch_efficiency Branch Efficiency 100.00% 100.00% 100.00%

    Branch Efficiency的定义如下:

    到这里你应该在奇怪为什么二者表现相同呢,实际上当我们的代码很简单,可以被预测时,CUDA的编译器会自动帮助优化我们的代码。稍微提一下GPU分支预测(理解的有点晕,不过了解下就好),这里,一个被称为预测变量的东西会被设置成1或者0,所有分支都会得到执行,但是只有预测值为1时,才会得到执行。当条件状态少于某一个阈值时,编译器会将一个分支指令替换为预测指令,因此,现在回到自动优化问题,一份较长的代码就会导致warp divergence了。

    可以使用下面的命令强制编译器不优化(貌似不怎么管用):

    $ nvcc -g -G -arch=sm_20 simpleDivergence.cu -o simpleDivergence

    Resource Partitioning

    一个warp的context包括以下三部分:

    1. Program counter
    2. Register
    3. Shared memory

    再次重申,在同一个执行context中切换是没有消耗的,因为在整个warp的生命期内,SM处理的每个warp的执行context都是on-chip的。

    每个SM有一个32位register集合放在register file中,还有固定数量的shared memory,这些资源都被thread瓜分了,由于资源是有限的,所以,如果thread比较多,那么每个thread占用资源就叫少,thread较少,占用资源就较多,这需要根据自己的要求作出一个平衡。

    资源限制了驻留在SM中blcok的数量,不同的device,register和shared memory的数量也不同,就像之前介绍的Fermi和Kepler的差别。如果没有足够的资源,kernel的启动就会失败。

    当一个block或得到足够的资源时,就成为active block。block中的warp就称为active warp。active warp又可以被分为下面三类:

    1. Selected warp
    2. Stalled warp
    3. Eligible warp

    SM中warp调度器每个cycle会挑选active warp送去执行,一个被选中的warp称为selected warp,没被选中,但是已经做好准备被执行的称为Eligible warp,没准备好要执行的称为Stalled warp。warp适合执行需要满足下面两个条件:

    1. 32个CUDA core有空
    2. 所有当前指令的参数都准备就绪

    例如,Kepler任何时刻的active warp数目必须少于或等于64个(GPU架构篇有介绍)。selected warp数目必须小于或等于4个(因为scheduler有4个?不确定,至于4个是不是太少则不用担心,kernel启动前,会有一个warmup操作,可以使用cudaFree()来实现)。如果一个warp阻塞了,调度器会挑选一个Eligible warp准备去执行。

    CUDA编程中应该重视对计算资源的分配:这些资源限制了active warp的数量。因此,我们必须掌握硬件的一些限制,为了最大化GPU利用率,我们必须最大化active warp的数目。

    Latency Hiding

    指令从开始到结束消耗的clock cycle称为指令的latency。当每个cycle都有eligible warp被调度时,计算资源就会得到充分利用,基于此,我们就可以将每个指令的latency隐藏于issue其它warp的指令的过程中。

    和CPU编程相比,latency hiding对GPU非常重要。CPU cores被设计成可以最小化一到两个thread的latency,但是GPU的thread数目可不是一个两个那么简单。

    当涉及到指令latency时,指令可以被区分为下面两种:

    1. Arithmetic instruction
    2. Memory instruction

    顾名思义,Arithmetic  instruction latency是一个算数操作的始末间隔。另一个则是指load或store的始末间隔。二者的latency大约为:

    1. 10-20 cycle for arithmetic operations
    2. 400-800 cycles for global memory accesses

    下图是一个简单的执行流程,当warp0阻塞时,执行其他的warp,当warp变为eligible时从新执行。

    你可能想要知道怎样评估active warps 的数量来hide latency。Little’s Law可以提供一个合理的估计:

     

    对于Arithmetic operations来说,并行性可以表达为用来hide  Arithmetic latency的操作的数目。下表显示了Fermi和Kepler相关数据,这里是以(a + b * c)作为操作的例子。不同的算数指令,throughput(吞吐)也是不同的。

    这里的throughput定义为每个SM每个cycle的操作数目。由于每个warp执行同一种指令,因此每个warp对应32个操作。所以,对于Fermi来说,每个SM需要640/32=20个warp来保持计算资源的充分利用。这也就意味着,arithmetic operations的并行性可以表达为操作的数目或者warp的数目。二者的关系也对应了两种方式来增加并行性:

    1. Instruction-level Parallelism(ILP):同一个thread中更多的独立指令
    2. Thread-level Parallelism (TLP):更多并发的eligible threads

    对于Memory operations,并行性可以表达为每个cycle的byte数目。

    因为memory throughput总是以GB/Sec为单位,我们需要先作相应的转化。可以通过下面的指令来查看device的memory frequency:

    $ nvidia-smi -a -q -d CLOCK | fgrep -A 3 "Max Clocks" | fgrep "Memory"

    以Fermi为例,其memory frequency可能是1.566GHz,Kepler的是1.6GHz。那么转化过程为:

     

    乘上这个92可以得到上图中的74,这里的数字是针对整个device的,而不是每个SM。

    有了这些数据,我们可以做一些计算了,以Fermi为例,假设每个thread的任务是将一个float(4 bytes)类型的数据从global memory移至SM用来计算,你应该需要大约18500个thread,也就是579个warp来隐藏所有的memory latency。

     

    Fermi有16个SM,所以每个SM需要579/16=36个warp来隐藏memory latency。

    Occupancy

    当一个warp阻塞了,SM会执行另一个eligible warp。理想情况是,每时每刻到保证cores被占用。Occupancy就是每个SM的active warp占最大warp数目的比例:

     

    我们可以使用的device篇提到的方法来获取warp最大数目:

    cudaError_t cudaGetDeviceProperties(struct cudaDeviceProp *prop, int device);

    然后用maxThreadsPerMultiProcessor来获取具体数值。

    grid和block的配置准则:

    • 保证block中thrad数目是32的倍数。
    • 避免block太小:每个blcok最少128或256个thread。
    • 根据kernel需要的资源调整block。
    • 保证block的数目远大于SM的数目。
    • 多做实验来挖掘出最好的配置。

    Occupancy专注于每个SM中可以并行的thread或者warp的数目。不管怎样,Occupancy不是唯一的性能指标,Occupancy达到当某个值是,再做优化就可能不在有效果了,还有许多其它的指标需要调节,我们会在之后的博文继续探讨。

    Synchronize

    同步是并行编程的一个普遍的问题。在CUDA的世界里,有两种方式实现同步:

    1. System-level:等待所有host和device的工作完成
    2. Block-level:等待device中block的所有thread执行到某个点

    因为CUDA API和host代码是异步的,cudaDeviceSynchronize可以用来停住CUP等待CUDA中的操作完成:

    cudaError_t cudaDeviceSynchronize(void);

    因为block中的thread执行顺序不定,CUDA提供了一个function来同步block中的thread。

    __device__ void __syncthreads(void);

    当该函数被调用,block中的每个thread都会等待所有其他thread执行到某个点来实现同步。

  • 相关阅读:
    华为徐直军第一次非主场演讲,信息量很大
    智慧城市行业领军企业一览表
    【Python】+Django框架使用
    【Python】+pip超时
    【Python】+web应用开发/界面/Django/Flask
    【Java】+【JSON】+对比两个json对象是否完全一样
    【数据库】+多表查询
    【Java】+MD5生成
    【Java】+操作csv文件
    【Java】+反射1+获取属性/成员变量 的名称及类型
  • 原文地址:https://www.cnblogs.com/1024incn/p/4541313.html
Copyright © 2011-2022 走看看