zoukankan      html  css  js  c++  java
  • CUDA ---- Branch Divergence and Unrolling Loop

    Avoiding Branch Divergence

    有时,控制流依赖于thread索引。同一个warp中,一个条件分支可能导致很差的性能。通过重新组织数据获取模式可以减少或避免warp divergence(该问题的解释请查看warp解析篇)。

    The Parallel Reduction Problem

    我们现在要计算一个数组N个元素的和。这个过程用CPU编程很容易实现:

    int sum = 0;
    for (int i = 0; i < N; i++)
        sum += array[i];

    那么如果Array的元素非常多呢?应用并行计算可以大大提升这个过程的效率。鉴于加法的交换律等性质,这个求和过程可以以元素的任意顺序来进行:

    • 将输入数组切割成很多小的块。
    • 用thread来计算每个块的和。
    • 对这些块的结果再求和得最终结果。

    数组的切割主旨是,用thread求数组中按一定规律配对的的两个元素和,然后将所有结果组合成一个新的数组,然后再次求配对两元素和,多次迭代,直到数组中只有一个结果。

    比较直观的两种实现方式是:

    1. Neighbored pair:每次迭代都是相邻两个元素求和。
    2. Interleaved pair:按一定跨度配对两个元素。

    下图展示了两种方式的求解过程,对于有N个元素的数组,这个过程需要N-1次求和,log(N)步。Interleaved pair的跨度是半个数组长度。

     

    下面是用递归实现的interleaved pair代码(host):

    int recursiveReduce(int *data, int const size) {
        // terminate check
        if (size == 1) return data[0];
            // renew the stride
           int const stride = size / 2;
           // in-place reduction
        for (int i = 0; i < stride; i++) {
            data[i] += data[i + stride];
        }
        // call recursively
        return recursiveReduce(data, stride);
    }                

    上述讲的这类问题术语叫reduction problemParallel reduction(并行规约)是指迭代减少操作,是并行算法中非常关键的一种操作。

    Divergence in Parallel Reduction

    这部分以neighbored pair为参考研究:

     

    在这个kernel里面,有两个global memory array,一个用来存放数组所有数据,另一个用来存放部分和。所有block独立的执行求和操作。__syncthreads(关于同步,请看前文)用来保证每次迭代,所有的求和操作都做完,然后进入下一步迭代。

    __global__ void reduceNeighbored(int *g_idata, int *g_odata, unsigned int n) {
        // set thread ID
        unsigned int tid = threadIdx.x;
        // convert global data pointer to the local pointer of this block
        int *idata = g_idata + blockIdx.x * blockDim.x;
        // boundary check
        if (idx >= n) return;
            // in-place reduction in global memory
        for (int stride = 1; stride < blockDim.x; stride *= 2) {
            if ((tid % (2 * stride)) == 0) {
                idata[tid] += idata[tid + stride];
            }
            // synchronize within block
            __syncthreads();
        }
        // write result for this block to global mem
        if (tid == 0) g_odata[blockIdx.x] = idata[0];
    }        

    因为没有办法让所有的block同步,所以最后将所有block的结果送回host来进行串行计算,如下图所示:

     

    main代码: 

    int main(int argc, char **argv) {
    // set up device
    int dev = 0;
    cudaDeviceProp deviceProp;
    cudaGetDeviceProperties(&deviceProp, dev);
    printf("%s starting reduction at ", argv[0]);
    printf("device %d: %s ", dev, deviceProp.name);
    cudaSetDevice(dev);
    bool bResult = false;
    // initialization
    int size = 1<<24; // total number of elements to reduce
    printf(" with array size %d ", size);
    // execution configuration
    int blocksize = 512; // initial block size
    if(argc > 1) {
    blocksize = atoi(argv[1]); // block size from command line argument
    }
    dim3 block (blocksize,1);
    dim3 grid ((size+block.x-1)/block.x,1);
    printf("grid %d block %d
    ",grid.x, block.x);
    // allocate host memory
    size_t bytes = size * sizeof(int);
    int *h_idata = (int *) malloc(bytes);
    int *h_odata = (int *) malloc(grid.x*sizeof(int));
    int *tmp = (int *) malloc(bytes);
    // initialize the array
    for (int i = 0; i < size; i++) {
    // mask off high 2 bytes to force max number to 255
    h_idata[i] = (int)(rand() & 0xFF);
    }
    memcpy (tmp, h_idata, bytes);
    size_t iStart,iElaps;
    int gpu_sum = 0;
    // allocate device memory
    int *d_idata = NULL;
    int *d_odata = NULL;
    cudaMalloc((void **) &d_idata, bytes);
    cudaMalloc((void **) &d_odata, grid.x*sizeof(int));
    // cpu reduction
    iStart = seconds ();
    int cpu_sum = recursiveReduce(tmp, size);
    iElaps = seconds () - iStart;
    printf("cpu reduce elapsed %d ms cpu_sum: %d
    ",iElaps,cpu_sum);
    // kernel 1: reduceNeighbored
    cudaMemcpy(d_idata, h_idata, bytes, cudaMemcpyHostToDevice);
    cudaDeviceSynchronize();
    iStart = seconds ();
    warmup<<<grid, block>>>(d_idata, d_odata, size);
    cudaDeviceSynchronize();
    iElaps = seconds () - iStart;
    cudaMemcpy(h_odata, d_odata, grid.x*sizeof(int), cudaMemcpyDeviceToHost);
    gpu_sum = 0;
    for (int i=0; i<grid.x; i++) gpu_sum += h_odata[i];
    printf("gpu Warmup elapsed %d ms gpu_sum: %d <<<grid %d block %d>>>
    ",
    iElaps,gpu_sum,grid.x,block.x);
    // kernel 1: reduceNeighbored
    cudaMemcpy(d_idata, h_idata, bytes, cudaMemcpyHostToDevice);
    cudaDeviceSynchronize();
    iStart = seconds ();
    reduceNeighbored<<<grid, block>>>(d_idata, d_odata, size);
    cudaDeviceSynchronize();
    iElaps = seconds () - iStart;
    cudaMemcpy(h_odata, d_odata, grid.x*sizeof(int), cudaMemcpyDeviceToHost);
    gpu_sum = 0;
    for (int i=0; i<grid.x; i++) gpu_sum += h_odata[i];
    printf("gpu Neighbored elapsed %d ms gpu_sum: %d <<<grid %d block %d>>>
    ",
    iElaps,gpu_sum,grid.x,block.x);
    cudaDeviceSynchronize();
    iElaps = seconds() - iStart;
    cudaMemcpy(h_odata, d_odata, grid.x/8*sizeof(int), cudaMemcpyDeviceToHost);
    gpu_sum = 0;
    for (int i = 0; i < grid.x / 8; i++) gpu_sum += h_odata[i];
    printf("gpu Cmptnroll elapsed %d ms gpu_sum: %d <<<grid %d block %d>>>
    ",
    iElaps,gpu_sum,grid.x/8,block.x);
    /// free host memory
    free(h_idata);
    free(h_odata);
    // free device memory
    cudaFree(d_idata);
    cudaFree(d_odata);
    // reset device
    cudaDeviceReset();
    // check the results
    bResult = (gpu_sum == cpu_sum);
    if(!bResult) printf("Test failed!
    ");
    return EXIT_SUCCESS;
    }
    View Code

    初始化数组,使其包含16M元素:

    int size = 1<<24;

    kernel配置为1D grid和1D block:

    dim3 block (blocksize, 1);
    dim3 block ((siize + block.x – 1) / block.x, 1);

    编译:

    $ nvcc -O3 -arch=sm_20 reduceInteger.cu -o reduceInteger

    运行:

    $ ./reduceInteger starting reduction at device 0: Tesla M2070
    with array size 16777216 grid 32768 block 512
    cpu reduce elapsed 29 ms cpu_sum: 2139353471
    gpu Neighbored elapsed 11 ms gpu_sum: 2139353471 <<<grid 32768 block 512>>>
    Improving Divergence in Parallel Reduction

    考虑上节if判断条件:

    if ((tid % (2 * stride)) == 0)

    因为这表达式只对偶数ID的线程为true,所以其导致很高的divergent warps。第一次迭代只有偶数ID的线程执行了指令,但是所有线程都要被调度;第二次迭代,只有四分之的thread是active的,但是所有thread仍然要被调度。我们可以重新组织每个线程对应的数组索引来强制ID相邻的thread来处理求和操作。如下图所示(注意途中的Thread ID与上一个图的差别):

     

    新的代码:

    __global__ void reduceNeighboredLess (int *g_idata, int *g_odata, unsigned int n) {
        // set thread ID
        unsigned int tid = threadIdx.x;
        unsigned int idx = blockIdx.x * blockDim.x + threadIdx.x;
        // convert global data pointer to the local pointer of this block
        int *idata = g_idata + blockIdx.x*blockDim.x;
        // boundary check
        if(idx >= n) return;
        // in-place reduction in global memory
        for (int stride = 1; stride < blockDim.x; stride *= 2) {
            // convert tid into local array index
            int index = 2 * stride * tid;
            if (index < blockDim.x) {
                idata[index] += idata[index + stride];
            }    
            // synchronize within threadblock
            __syncthreads();
        }
        // write result for this block to global mem
        if (tid == 0) g_odata[blockIdx.x] = idata[0];
    }                                

    注意这行代码:

    int index = 2 * stride * tid;

    因为步调乘以了2,下面的语句使用block的前半部分thread来执行求和:

    if (index < blockDim.x)

    对于一个有512个thread的block来说,前八个warp执行第一轮reduction,剩下八个warp什么也不干;第二轮,前四个warp执行,剩下十二个什么也不干。因此,就彻底不存在divergence了(重申,divergence只发生于同一个warp)。最后的五轮还是会导致divergence,因为这个时候需要执行threads已经凑不够一个warp了。

    // kernel 2: reduceNeighbored with less divergence
    cudaMemcpy(d_idata, h_idata, bytes, cudaMemcpyHostToDevice);
    cudaDeviceSynchronize();
    iStart = seconds();
    reduceNeighboredLess<<<grid, block>>>(d_idata, d_odata, size);
    cudaDeviceSynchronize();
    iElaps = seconds() - iStart;
    cudaMemcpy(h_odata, d_odata, grid.x*sizeof(int), cudaMemcpyDeviceToHost);
    gpu_sum = 0;
    for (int i=0; i<grid.x; i++) gpu_sum += h_odata[i];
    printf("gpu Neighbored2 elapsed %d ms gpu_sum: %d <<<grid %d block %d>>>
    ",iElaps,gpu_sum,grid.x,block.x);

    运行结果:

    $ ./reduceInteger Starting reduction at device 0: Tesla M2070
    vector size 16777216 grid 32768 block 512
    cpu reduce elapsed 0.029138 sec cpu_sum: 2139353471
    gpu Neighbored elapsed 0.011722 sec gpu_sum: 2139353471 <<<grid 32768 block 512>>>
    gpu NeighboredL elapsed 0.009321 sec gpu_sum: 2139353471 <<<grid 32768 block 512>>>

    新的实现比原来的快了1.26。我们也可以使用nvprof的inst_per_warp参数来查看每个warp上执行的指令数目的平均值。

    $ nvprof --metrics inst_per_warp ./reduceInteger

    输出,原来的是新的kernel的两倍还多,因为原来的有许多不必要的操作也执行了:

    Neighbored Instructions per warp 295.562500
    NeighboredLess Instructions per warp 115.312500

    再查看throughput:

    $ nvprof --metrics gld_throughput ./reduceInteger

    输出,新的kernel拥有更大的throughput,因为虽然I/O操作数目相同,但是其耗时短:

    Neighbored Global Load Throughput 67.663GB/s
    NeighboredL Global Load Throughput 80.144GB/s
    Reducing with Interleaved Pairs

     Interleaved Pair模式的初始步调是block大小的一半,每个thread处理像个半个block的两个数据求和。和之前的图示相比,工作的thread数目没有变化,但是,每个thread的load/store global memory的位置是不同的。

    Interleaved Pair的kernel实现:

    /// Interleaved Pair Implementation with less divergence
    __global__ void reduceInterleaved (int *g_idata, int *g_odata, unsigned int n) {
    // set thread ID
    unsigned int tid = threadIdx.x;
    unsigned int idx = blockIdx.x * blockDim.x + threadIdx.x;
    // convert global data pointer to the local pointer of this block
    int *idata = g_idata + blockIdx.x * blockDim.x;
    // boundary check
    if(idx >= n) return;
    // in-place reduction in global memory
    for (int stride = blockDim.x / 2; stride > 0; stride >>= 1) {
    if (tid < stride) {
    idata[tid] += idata[tid + stride];
    }
    __syncthreads();
    }
    // write result for this block to global mem
    if (tid == 0) g_odata[blockIdx.x] = idata[0];
    }

     

    注意下面的语句,步调被初始化为block大小的一半:

    for (int stride = blockDim.x / 2; stride > 0; stride >>= 1) {

    下面的语句使得第一次迭代时,block的前半部分thread执行相加操作,第二次是前四分之一,以此类推:

    if (tid < stride)

    下面是加入main的代码:

    cudaMemcpy(d_idata, h_idata, bytes, cudaMemcpyHostToDevice);
    cudaDeviceSynchronize();
    iStart = seconds();
    reduceInterleaved <<< grid, block >>> (d_idata, d_odata, size);
    cudaDeviceSynchronize();
    iElaps = seconds() - iStart;
    cudaMemcpy(h_odata, d_odata, grid.x*sizeof(int), cudaMemcpyDeviceToHost);
    gpu_sum = 0;
    for (int i = 0; i < grid.x; i++) gpu_sum += h_odata[i];
    printf("gpu Interleaved elapsed %f sec gpu_sum: %d <<<grid %d block %d>>>
    ",iElaps,gpu_sum,grid.x,block.x);

    运行输出:

    $ ./reduce starting reduction at device 0: Tesla M2070
    with array size 16777216 grid 32768 block 512
    cpu reduce elapsed 0.029138 sec cpu_sum: 2139353471
    gpu Warmup elapsed 0.011745 sec gpu_sum: 2139353471 <<<grid 32768 block 512>>>
    gpu Neighbored elapsed 0.011722 sec gpu_sum: 2139353471 <<<grid 32768 block 512>>>
    gpu NeighboredL elapsed 0.009321 sec gpu_sum: 2139353471 <<<grid 32768 block 512>>>
    gpu Interleaved elapsed 0.006967 sec gpu_sum: 2139353471 <<<grid 32768 block 512>>>

    这次相对第一个kernel又快了1.69,比第二个也快了1.34。这个效果主要由global memory的load/store模式导致的(这部分知识将在后续博文介绍)。

    UNrolling Loops

    loop unrolling 是用来优化循环减少分支的方法,该方法简单说就是把本应在多次loop中完成的操作,尽量压缩到一次loop。循环体展开程度称为loop unrolling factor(循环展开因子),loop unrolling对顺序数组的循环操作性能有很大影响,考虑如下代码:

    for (int i = 0; i < 100; i++) {
        a[i] = b[i] + c[i];
    }

    如下重复一次循环体操作,迭代数目将减少一半:

    for (int i = 0; i < 100; i += 2) {
        a[i] = b[i] + c[i];
        a[i+1] = b[i+1] + c[i+1];
    }    

    从高级语言层面是无法看出性能提升的原因的,需要从low-level instruction层面去分析,第二段代码循环次数减少了一半,而循环体两句语句的读写操作的执行在CPU上是可以同时执行互相独立的,所以相对第一段,第二段性能要好。

    Unrolling 在CUDA编程中意义更重。我们的目标依然是通过减少指令执行消耗,增加更多的独立指令来提高性能。这样就会增加更多的并行操作从而产生更高的指令和内存带宽(bandwidth)。也就提供了更多的eligible warps来帮助hide instruction/memory latency 。

    Reducing with Unrolling

    在前文的reduceInterleaved中,每个block处理一部分数据,我们给这数据起名data block。下面的代码是reduceInterleaved的修正版本,每个block,都是以两个data block作为源数据进行操作,(前文中,每个block处理一个data block)。这是一种cyclic partitioning:每个thread作用于多个data block,并且从每个data block中取出一个元素处理。

    __global__ void reduceUnrolling2 (int *g_idata, int *g_odata, unsigned int n) {
        // set thread ID
        unsigned int tid = threadIdx.x;
        unsigned int idx = blockIdx.x * blockDim.x * 2 + threadIdx.x;
    
        // convert global data pointer to the local pointer of this block
        int *idata = g_idata + blockIdx.x * blockDim.x * 2;
    
        // unrolling 2 data blocks
        if (idx + blockDim.x < n) g_idata[idx] += g_idata[idx + blockDim.x];
        __syncthreads();
    
        // in-place reduction in global memory
        for (int stride = blockDim.x / 2; stride > 0; stride >>= 1) {
            if (tid < stride) {
                idata[tid] += idata[tid + stride];
            }
            // synchronize within threadblock
            __syncthreads();
        }
    
        // write result for this block to global mem
        if (tid == 0) g_odata[blockIdx.x] = idata[0];
    }                                                

    注意下面的语句,每个thread从相邻的data block中取数据,这一步实际上就是将两个data block规约成一个。

    if (idx + blockDim.x < n) g_idata[idx] += g_idata[idx+blockDim.x];

    global array index也要相应的调整,因为,相对之前的版本,同样的数据,我们只需要原来一半的thread就能解决问题。要注意的是,这样做也会降低warp或block的并行性(因为thread少啦):

     

    main增加下面代码:

    cudaMemcpy(d_idata, h_idata, bytes, cudaMemcpyHostToDevice);
    cudaDeviceSynchronize();
    iStart = seconds();
    reduceUnrolling2 <<< grid.x/2, block >>> (d_idata, d_odata, size);
    cudaDeviceSynchronize();
    iElaps = seconds() - iStart;
    cudaMemcpy(h_odata, d_odata, grid.x/2*sizeof(int), cudaMemcpyDeviceToHost);
    gpu_sum = 0;
    for (int i = 0; i < grid.x / 2; i++) gpu_sum += h_odata[i];
    printf("gpu Unrolling2 elapsed %f sec gpu_sum: %d <<<grid %d block %d>>>
    ",iElaps,gpu_sum,grid.x/2,block.x);

    由于每个block处理两个data block,所以需要调整grid的配置:

    reduceUnrolling2<<<grid.x / 2, block>>>(d_idata, d_odata, size);

    运行输出:

    gpu Unrolling2 elapsed 0.003430 sec gpu_sum: 2139353471 <<<grid 16384 block 512>>>

    这样一次简单的操作就比原来的减少了3.42。我们在试试每个block处理4个和8个data block的情况:

    reduceUnrolling4 : each threadblock handles 4 data blocks

    reduceUnrolling8 : each threadblock handles 8 data blocks

    加上这两个的输出是:

    gpu Unrolling2 elapsed 0.003430 sec gpu_sum: 2139353471 <<<grid 16384 block 512>>>
    gpu Unrolling4 elapsed 0.001829 sec gpu_sum: 2139353471 <<<grid 8192 block 512>>>
    gpu Unrolling8 elapsed 0.001422 sec gpu_sum: 2139353471 <<<grid 4096 block 512>>>

    可以看出,同一个thread中如果能有更多的独立的load/store操作,会产生更好的性能,因为这样做memory latency能够更好的被隐藏。我们可以使用nvprof的dram_read_throughput来验证:

    $ nvprof --metrics dram_read_throughput ./reduceInteger

    下面是输出结果,我们可以得出这样的结论,device read throughtput和unrolling程度是正比的:

    Unrolling2 Device Memory Read Throughput 26.295GB/s
    Unrolling4 Device Memory Read Throughput 49.546GB/s
    Unrolling8 Device Memory Read Throughput 62.764GB/s
    Reducinng with Unrolled Warps

    __syncthreads是用来同步block内部thread的(请看warp解析篇)。在reduction kernel中,他被用来在每次循环中年那个保证所有thread的写global memory的操作都已完成,这样才能进行下一阶段的计算。

    那么,当kernel进行到只需要少于或等32个thread(也就是一个warp)呢?由于我们是使用的SIMT模式,warp内的thread 是有一个隐式的同步过程的。最后六次迭代可以用下面的语句展开:

    if (tid < 32) {
        volatile int *vmem = idata;
        vmem[tid] += vmem[tid + 32];
        vmem[tid] += vmem[tid + 16];
        vmem[tid] += vmem[tid + 8];
        vmem[tid] += vmem[tid + 4];
        vmem[tid] += vmem[tid + 2];
        vmem[tid] += vmem[tid + 1];
    }                

    warp unrolling避免了__syncthreads同步操作,因为这一步本身就没必要。

    这里注意下volatile修饰符,他告诉编译器每次执行赋值时必须将vmem[tid]的值store回global memory。如果不这样做的话,编译器或cache可能会优化我们读写global/shared memory。有了这个修饰符,编译器就会认为这个值会被其他thread修改,从而使得每次读写都直接去memory而不是去cache或者register。

    __global__ void reduceUnrollWarps8 (int *g_idata, int *g_odata, unsigned int n) {
        // set thread ID
        unsigned int tid = threadIdx.x;
        unsigned int idx = blockIdx.x*blockDim.x*8 + threadIdx.x;
    
        // convert global data pointer to the local pointer of this block
        int *idata = g_idata + blockIdx.x*blockDim.x*8;
    
        // unrolling 8
        if (idx + 7*blockDim.x < n) {
            int a1 = g_idata[idx];
            int a2 = g_idata[idx+blockDim.x];
            int a3 = g_idata[idx+2*blockDim.x];
            int a4 = g_idata[idx+3*blockDim.x];
            int b1 = g_idata[idx+4*blockDim.x];
            int b2 = g_idata[idx+5*blockDim.x];
            int b3 = g_idata[idx+6*blockDim.x];
            int b4 = g_idata[idx+7*blockDim.x];
            g_idata[idx] = a1+a2+a3+a4+b1+b2+b3+b4;
        }
        __syncthreads();
    
        // in-place reduction in global memory
        for (int stride = blockDim.x / 2; stride > 32; stride >>= 1) {
    
            if (tid < stride) {
                idata[tid] += idata[tid + stride];
            }
        
            // synchronize within threadblock
            __syncthreads();
        }
    
        // unrolling warp
        if (tid < 32) {
            volatile int *vmem = idata;
            vmem[tid] += vmem[tid + 32];
            vmem[tid] += vmem[tid + 16];
            vmem[tid] += vmem[tid + 8];
            vmem[tid] += vmem[tid + 4];
            vmem[tid] += vmem[tid + 2];
            vmem[tid] += vmem[tid + 1];
        }
    
        // write result for this block to global mem
        if (tid == 0) g_odata[blockIdx.x] = idata[0];
    }                                                                                                            

    因为处理的data block变为八个,kernel调用变为;

    reduceUnrollWarps8<<<grid.x / 8, block>>> (d_idata, d_odata, size);

    这次执行结果比reduceUnnrolling8快1.05,比reduceNeighboured快8,65:

    gpu UnrollWarp8 elapsed 0.001355 sec gpu_sum: 2139353471 <<<grid 4096 block 512>>>

    nvprof的stall_sync可以用来验证由于__syncthreads导致更少的warp阻塞了:

    $ nvprof --metrics stall_sync ./reduce
    Unrolling8 Issue Stall Reasons 58.37%
    UnrollWarps8 Issue Stall Reasons 30.60%
    Reducing with Complete Unrolling

    如果在编译时已知了迭代次数,就可以完全把循环展开。Fermi和Kepler每个block的最大thread数目都是1024,博文中的kernel的迭代次数都是基于blockDim的,所以完全展开循环是可行的。

    __global__ void reduceCompleteUnrollWarps8 (int *g_idata, int *g_odata,
    unsigned int n) {
        // set thread ID
        unsigned int tid = threadIdx.x;
        unsigned int idx = blockIdx.x * blockDim.x * 8 + threadIdx.x;
    
        // convert global data pointer to the local pointer of this block
        int *idata = g_idata + blockIdx.x * blockDim.x * 8;
    
        // unrolling 8
        if (idx + 7*blockDim.x < n) {
            int a1 = g_idata[idx];
            int a2 = g_idata[idx + blockDim.x];
            int a3 = g_idata[idx + 2 * blockDim.x];
            int a4 = g_idata[idx + 3 * blockDim.x];
            int b1 = g_idata[idx + 4 * blockDim.x];
            int b2 = g_idata[idx + 5 * blockDim.x];
            int b3 = g_idata[idx + 6 * blockDim.x];
            int b4 = g_idata[idx + 7 * blockDim.x];
            g_idata[idx] = a1 + a2 + a3 + a4 + b1 + b2 + b3 + b4;
        }
        __syncthreads();
    
        // in-place reduction and complete unroll
        if (blockDim.x>=1024 && tid < 512) idata[tid] += idata[tid + 512];
        __syncthreads();
            
        if (blockDim.x>=512 && tid < 256) idata[tid] += idata[tid + 256];
        __syncthreads();
    
        if (blockDim.x>=256 && tid < 128) idata[tid] += idata[tid + 128];
        __syncthreads();
    
        if (blockDim.x>=128 && tid < 64) idata[tid] += idata[tid + 64];
        __syncthreads();
    
        // unrolling warp
        if (tid < 32) {
            volatile int *vsmem = idata;
            vsmem[tid] += vsmem[tid + 32];
            vsmem[tid] += vsmem[tid + 16];
            vsmem[tid] += vsmem[tid + 8];
            vsmem[tid] += vsmem[tid + 4];
            vsmem[tid] += vsmem[tid + 2];
            vsmem[tid] += vsmem[tid + 1];
        }
    
        // write result for this block to global mem
        if (tid == 0) g_odata[blockIdx.x] = idata[0];
    }                

    main中调用:

    reduceCompleteUnrollWarps8<<<grid.x / 8, block>>>(d_idata, d_odata, size);

    速度再次提升:

    gpu CmptUnroll8 elapsed 0.001280 sec gpu_sum: 2139353471 <<<grid 4096 block 512>>>

    Reducing with Templete Functions

    CUDA代码支持模板,我们可以如下设置block大小:

    template <unsigned int iBlockSize>
    __global__ void reduceCompleteUnroll(int *g_idata, int *g_odata, unsigned int n) {
    // set thread ID
    unsigned int tid = threadIdx.x;
    unsigned int idx = blockIdx.x * blockDim.x * 8 + threadIdx.x;
    
    // convert global data pointer to the local pointer of this block
    int *idata = g_idata + blockIdx.x * blockDim.x * 8;
    
    // unrolling 8
    if (idx + 7*blockDim.x < n) {
    int a1 = g_idata[idx];
    int a2 = g_idata[idx + blockDim.x];
    int a3 = g_idata[idx + 2 * blockDim.x];
    int a4 = g_idata[idx + 3 * blockDim.x];
    int b1 = g_idata[idx + 4 * blockDim.x];
    int b2 = g_idata[idx + 5 * blockDim.x];
    int b3 = g_idata[idx + 6 * blockDim.x];
    int b4 = g_idata[idx + 7 * blockDim.x];
    g_idata[idx] = a1+a2+a3+a4+b1+b2+b3+b4;
    }
    __syncthreads();
    
    // in-place reduction and complete unroll
    if (iBlockSize>=1024 && tid < 512) idata[tid] += idata[tid + 512];
    __syncthreads();
    
    if (iBlockSize>=512 && tid < 256) idata[tid] += idata[tid + 256];
    __syncthreads();
    
    if (iBlockSize>=256 && tid < 128) idata[tid] += idata[tid + 128];
    __syncthreads();
    
    if (iBlockSize>=128 && tid < 64) idata[tid] += idata[tid + 64];
    __syncthreads();
    
    // unrolling warp
    if (tid < 32) {
    volatile int *vsmem = idata;
    vsmem[tid] += vsmem[tid + 32];
    vsmem[tid] += vsmem[tid + 16];
    vsmem[tid] += vsmem[tid + 8];
    vsmem[tid] += vsmem[tid + 4];
    vsmem[tid] += vsmem[tid + 2];
    vsmem[tid] += vsmem[tid + 1];
    }
    
    // write result for this block to global mem
    if (tid == 0) g_odata[blockIdx.x] = idata[0];
    }

    对于if的条件,如果值为false,那么在编译时就会去掉该语句,这样效率更好。例如,如果调用kernel时的blocksize是256,那么,下面的语句将永远为false,编译器会将他移除不予执行:

    IBlockSize>=1024 && tid < 512

    这个kernel必须以一个switch-case来调用:

    switch (blocksize) {
        case 1024:
            reduceCompleteUnroll<1024><<<grid.x/8, block>>>(d_idata, d_odata, size);
            break;
        case 512:
            reduceCompleteUnroll<512><<<grid.x/8, block>>>(d_idata, d_odata, size);
            break;
        case 256:
            reduceCompleteUnroll<256><<<grid.x/8, block>>>(d_idata, d_odata, size);
            break;
        case 128:
            reduceCompleteUnroll<128><<<grid.x/8, block>>>(d_idata, d_odata, size);
            break;
        case 64:
            reduceCompleteUnroll<64><<<grid.x/8, block>>>(d_idata, d_odata, size);
            break;
    }            

    各种情况下,执行后的结果为:

     

    $nvprof --metrics gld_efficiency,gst_efficiency ./reduceInteger

  • 相关阅读:
    我来了
    学习笔记-数据仓库和数据挖掘
    React及JSX常见问题
    JavaScript笔记,不定期更新
    比strlen执行速度更快的处理字符串长度的函数
    LESS笔记/注意手册(更新中)
    鼠标移到图片变化的三种写法(可移植性强、代码少)
    信息安全技术作业5--散列函数的应用及其安全性
    结对作业(web)
    读《构建之法》第4、17章
  • 原文地址:https://www.cnblogs.com/1024incn/p/4548056.html
Copyright © 2011-2022 走看看