zoukankan      html  css  js  c++  java
  • poj 2151 概率DP(水)

    Check the difficulty of problems
    Time Limit: 2000MS   Memory Limit: 65536K
    Total Submissions: 5750   Accepted: 2510

    Description

    Organizing a programming contest is not an easy job. To avoid making the problems too difficult, the organizer usually expect the contest result satisfy the following two terms:
    1. All of the teams solve at least one problem.
    2. The champion (One of those teams that solve the most problems) solves at least a certain number of problems.

    Now the organizer has studied out the contest problems, and through the result of preliminary contest, the organizer can estimate the probability that a certain team can successfully solve a certain problem.

    Given the number of contest problems M, the number of teams T, and the number of problems N that the organizer expect the champion solve at least. We also assume that team i solves problem j with the probability Pij (1 <= i <= T, 1<= j <= M). Well, can you calculate the probability that all of the teams solve at least one problem, and at the same time the champion team solves at least N problems?

    Input

    The input consists of several test cases. The first line of each test case contains three integers M (0 < M <= 30), T (1 < T <= 1000) and N (0 < N <= M). Each of the following T lines contains M floating-point numbers in the range of [0,1]. In these T lines, the j-th number in the i-th line is just Pij. A test case of M = T = N = 0 indicates the end of input, and should not be processed.

    Output

    For each test case, please output the answer in a separate line. The result should be rounded to three digits after the decimal point.

    Sample Input

    2 2 2
    0.9 0.9
    1 0.9
    0 0 0
    

    Sample Output

    0.972

    题意:在acm比赛中,n题,t队。给出每个队做对每题的概率,问每队至少对一题,至少有一队做对至少m题的概率。(本解题报告中的n,m与原题中相反)

    分析:dp,f[i][j]表示第i个队伍做对第j题的概率。g[i][j][k]表示第i个队伍对于前j题而言做对k道的概率。

    g[i][j][k] = g[i][j - 1][k - 1] * (f[i][j]) + g[i][j - 1][k] * (1 - f[i][j]);

    有了所有的g,我们就可以求出每个队至少做对1题的概率:ans *= 1 - g[i][n][0];

    再减去每个队都只做对1~m-1题的概率(把每个队做对1~m-1题的概率加和,并把各队结果相乘)

    #include<stdio.h>
    #include<string.h>
    #include<iostream>
    #include<algorithm>
    using namespace std;
    double f[1005][35];
    double dp[1005][35][35];
    int main(){
          int n,t,m;
          while(scanf("%d%d%d",&n,&t,&m)!=EOF){
                if(n==0&&t==0&&m==0)
                break;
             memset(f,0,sizeof(f));
             memset(dp,0,sizeof(dp));
             for(int i=0;i<t;i++){
                for(int j=1;j<=n;j++)
                    scanf("%lf",&f[i][j]);
             }
    
             for(int i=0;i<t;i++){
                dp[i][0][0]=1;
                for(int j=1;j<=n;j++){
                    dp[i][j][0]=dp[i][j-1][0]*(1-f[i][j]);
                    for(int k=1;k<=j;k++)
                        dp[i][j][k]=dp[i][j-1][k-1]*f[i][j]+dp[i][j-1][k]*(1-f[i][j]);
                }
             }
    
             double ans=1;
             for(int i=0;i<t;i++)
                ans*=(1-dp[i][n][0]);
    
             double temp=1;
             for(int i=0;i<t;i++){
                double sum=0;
                for(int j=1;j<m;j++)
                    sum+=dp[i][n][j];
                temp*=sum;
             }
    
             printf("%.3lf
    ",ans-temp);
    
          }
          return 0;
    }




  • 相关阅读:
    route add提示: "SIOCADDRT: No such process
    linux下route命令--说的比较清楚!
    linux route命令的使用详解
    Linux命令学习手册-route命令
    workqueue --最清晰的讲解
    udhcpc命令
    Mutex, semaphore, spinlock的深度解析
    dev_alloc_skb(len+16) skb_reserve(skb,2) skb_put(skb,len)
    skb_reserve(skb,2)中的2的意义
    option和 usb-serial驱动基本区别
  • 原文地址:https://www.cnblogs.com/13224ACMer/p/4700219.html
Copyright © 2011-2022 走看看