zoukankan      html  css  js  c++  java
  • spark dataframe方法解释

    DataFrame 的函数
    Action 操作
    1、 collect() ,返回值是一个数组,返回dataframe集合所有的行
    2、 collectAsList() 返回值是一个java类型的数组,返回dataframe集合所有的行
    3、 count() 返回一个number类型的,返回dataframe集合的行数
    4、 describe(cols: String*) 返回一个通过数学计算的类表值(count, mean, stddev, min, and max),这个可以传多个参数,中间用逗号分隔,如果有字段为空,那么不参与运算,只这对数值类型的字段。例如df.describe("age", "height").show()
    5、 first() 返回第一行 ,类型是row类型
    6、 head() 返回第一行 ,类型是row类型
    7、 head(n:Int)返回n行  ,类型是row 类型
    8、 show()返回dataframe集合的值 默认是20行,返回类型是unit
    9、 show(n:Int)返回n行,,返回值类型是unit
    10、 table(n:Int) 返回n行  ,类型是row 类型
    
    dataframe的基本操作
    1、 cache()同步数据的内存
    2、 columns 返回一个string类型的数组,返回值是所有列的名字
    3、 dtypes返回一个string类型的二维数组,返回值是所有列的名字以及类型
    4、 explan()打印执行计划  物理的
    5、 explain(n:Boolean) 输入值为 false 或者true ,返回值是unit  默认是false ,如果输入true 将会打印 逻辑的和物理的
    6、 isLocal 返回值是Boolean类型,如果允许模式是local返回true 否则返回false
    7、 persist(newlevel:StorageLevel) 返回一个dataframe.this.type 输入存储模型类型
    8、 printSchema() 打印出字段名称和类型 按照树状结构来打印
    9、 registerTempTable(tablename:String) 返回Unit ,将df的对象只放在一张表里面,这个表随着对象的删除而删除了
    10、 schema 返回structType 类型,将字段名称和类型按照结构体类型返回
    11、 toDF()返回一个新的dataframe类型的
    12、 toDF(colnames:String*)将参数中的几个字段返回一个新的dataframe类型的,
    13、 unpersist() 返回dataframe.this.type 类型,去除模式中的数据
    14、 unpersist(blocking:Boolean)返回dataframe.this.type类型 true 和unpersist是一样的作用false 是去除RDD
    
    集成查询:
    1、 agg(expers:column*) 返回dataframe类型 ,同数学计算求值
    df.agg(max("age"), avg("salary"))
    df.groupBy().agg(max("age"), avg("salary"))
    2、 agg(exprs: Map[String, String])  返回dataframe类型 ,同数学计算求值 map类型的
    df.agg(Map("age" -> "max", "salary" -> "avg"))
    df.groupBy().agg(Map("age" -> "max", "salary" -> "avg"))
    3、 agg(aggExpr: (String, String), aggExprs: (String, String)*)  返回dataframe类型 ,同数学计算求值
    df.agg(Map("age" -> "max", "salary" -> "avg"))
    df.groupBy().agg(Map("age" -> "max", "salary" -> "avg"))
    4、 apply(colName: String) 返回column类型,捕获输入进去列的对象
    5、 as(alias: String) 返回一个新的dataframe类型,就是原来的一个别名
    6、 col(colName: String)  返回column类型,捕获输入进去列的对象
    7、 cube(col1: String, cols: String*) 返回一个GroupedData类型,根据某些字段来汇总
    8、 distinct 去重 返回一个dataframe类型
    9、 drop(col: Column) 删除某列 返回dataframe类型
    10、 dropDuplicates(colNames: Array[String]) 删除相同的列 返回一个dataframe
    11、 except(other: DataFrame) 返回一个dataframe,返回在当前集合存在的在其他集合不存在的
    12、 explode[A, B](inputColumn: String, outputColumn: String)(f: (A) ⇒ TraversableOnce[B])(implicit arg0: scala.reflect.api.JavaUniverse.TypeTag[B]) 返回值是dataframe类型,这个 将一个字段进行更多行的拆分
    df.explode("name","names") {name :String=> name.split(" ")}.show();
    将name字段根据空格来拆分,拆分的字段放在names里面
    13、 filter(conditionExpr: String): 刷选部分数据,返回dataframe类型 df.filter("age>10").show();  df.filter(df("age")>10).show();   df.where(df("age")>10).show(); 都可以
    14、 groupBy(col1: String, cols: String*) 根据某写字段来汇总返回groupedate类型   df.groupBy("age").agg(Map("age" ->"count")).show();df.groupBy("age").avg().show();都可以
    15、 intersect(other: DataFrame) 返回一个dataframe,在2个dataframe都存在的元素
    16、 join(right: DataFrame, joinExprs: Column, joinType: String)
    一个是关联的dataframe,第二个关联的条件,第三个关联的类型:inner, outer, left_outer, right_outer, leftsemi
    df.join(ds,df("name")===ds("name") and  df("age")===ds("age"),"outer").show();
    17、 limit(n: Int) 返回dataframe类型  去n 条数据出来
    18、 na: DataFrameNaFunctions ,可以调用dataframenafunctions的功能区做过滤 df.na.drop().show(); 删除为空的行
    19、 orderBy(sortExprs: Column*) 做alise排序
    20、 select(cols:string*) dataframe 做字段的刷选 df.select($"colA", $"colB" + 1)
    21、 selectExpr(exprs: String*) 做字段的刷选 df.selectExpr("name","name as names","upper(name)","age+1").show();
    22、 sort(sortExprs: Column*) 排序 df.sort(df("age").desc).show(); 默认是asc
    23、 unionAll(other:Dataframe) 合并 df.unionAll(ds).show();
    24、 withColumnRenamed(existingName: String, newName: String) 修改列表 df.withColumnRenamed("name","names").show();
    25、 withColumn(colName: String, col: Column) 增加一列 df.withColumn("aa",df("name")).show();
    参考https://blog.csdn.net/sparkexpert/article/details/51042970?utm_source=copy 
  • 相关阅读:
    智能移动机器人背后蕴含的技术——激光雷达
    Kalman Filters
    Fiddler抓HttpClient的包
    VSCode开发WebApi EFCore的坑
    WPF之小米Logo超圆角的实现
    windows react打包发布
    jenkins in docker踩坑汇总
    Using ML.NET in Jupyter notebooks 在jupyter notebook中使用ML.NET ——No design time or full build available
    【Linux知识点】CentOS7 更换阿里云源
    【Golang 报错】exec gcc executable file not found in %PATH%
  • 原文地址:https://www.cnblogs.com/kaiwen03/p/9687015.html
Copyright © 2011-2022 走看看