zoukankan      html  css  js  c++  java
  • 二分图相关学习笔记

    二分图相关学习笔记

    前置知识

    二分图最大匹配

    一、二分图最小点覆盖

    点覆盖:一个点集,使得每条边都至少与该点集中一个点相连。
    最小点覆盖:点数最小的点覆盖,即:任意真子集不是点覆盖的点覆盖。

    二分图最小点覆盖=二分图最大匹配
    证明 :(König) 定理
    不难发现,要覆盖所有的匹配边至少需要最大匹配数的点。(可以看做一个下界)

    求最小点覆盖的过程(严格证明):
    可以思考二分图匹配时求增广路的过程,事实上是以一个未匹配点为起点寻找交错路(匹配边和非匹配边交错出现的路径),当找到一个在交错路上未匹配点时,就成功找到一条增广路。
    显然地,当二分图已是最大匹配时,每一次试图增广都会因为找不到未匹配点而失败。
    从左边所有未匹配点开始跑交错路,给经过的节点打标记,最后,左边没有标记的点和右边有标记的点就是最小覆盖点集。

    设二分图的最大匹配数为 (N)

    • 为什么得到的点集大小刚好为 (N)?点集中每个点与匹配一一对应,理由如下:

    		1.左边的非匹配点会当做起点被标记;
    		2.从左边的未匹配点开始,走不到右边的未匹配点,否则就会找到一条完整的增广路;
    		3.对于匹配边,左端点只能从右端点跑过来,所以左右端点只能同时有或没有标记。
    
    • 为什么点集可以覆盖所有边?没有边是左端点有标记,右端点没有标记的,理由如下:

    		1.非匹配边:右端点可以从左端点通过这条边到达。
    		2.匹配边:上文已经提到。
    

    (可配合画图理解)

    二、二分图最大独立集

    独立集:一个点集,集合中任意两点没有变相连。
    最大独立集:点数最多的独立集。

    二分图最大独立集=点数-二分图最小点覆盖=点数-二分图最大匹配

    求独立集的过程可以看成:在图中选一些点,删除这些点和与该这些点相连的所有边,直到所有边都被删掉,剩下的就是独立集。所以最大独立集和最小点覆盖互为补集。

    三、(DAG) 相关

    (1) 路径不可相交最小链覆盖

    可以把点 (x) 拆成两个点 (A_x,B_x)
    若在原图中 (x->y) 有边,则在新图中连接 (B_x->A_y),跑二分图最大匹配即可。
    (DAG) 最小路径覆盖=原图的点数-新图的最大匹配。
    证明:先把原图中的点分别看做一个点的路径,考虑新图中一条边作为匹配边的意义——在原图中将两个点相连,使得路径数减一。

    (2) 路径可相交最小链覆盖

    在原图上跑 (Floyd) 传递闭包,问题转化为(1)。

    (3) 最长反链

    根据 (Dilworth) 定理,最长反链=路径可相交最小链覆盖

    四、二分图带权匹配

    KM,费用流。

  • 相关阅读:
    拓端数据|R语言乘法GARCH模型对高频交易数据进行波动性预测
    拓端数据|Python中用Prophet模型对天气时间序列进行预测与异常检测
    拓端数据|R语言:状态空间模型和卡尔曼滤波预测酒精死亡人数时间序列
    拓端数据|R语言用LOESS(局部加权回归)季节趋势分解(STL)进行时间序列异常检测
    拓端数据|数据挖掘:香水电商销售策略分析
    UOJ#523. 【美团杯2020】半前缀计数 后缀自动机
    LuoguP6688 可重集 线段树+hash
    LuoguP6687 论如何玩转 Excel 表格 树状数组
    LOJ#2303. 「NOI2017」蚯蚓排队 hash+链表
    LOJ#6289. 花朵 树链剖分+分治NTT
  • 原文地址:https://www.cnblogs.com/15owzLy1-yiylcy/p/10620503.html
Copyright © 2011-2022 走看看