zoukankan      html  css  js  c++  java
  • 「2019纪中集训Day18」解题报告

    T1、完全背包

    (n (n leq 10 ^ 6)) 件物品,体积为 (a_i (a_i leq 100)),价值为 (b_i (b_i leq 100))。求一个容量为 (m (m leq 10 ^ {18})) 的背包可获得的最大价值。

    (Sol_1)

    (lemma):任意 (n) 个整数中一定能取出一段数使得它们的和被 (n) 整除。
    (prf)
    (n) 个数的前缀和为 (S_i)
    ({i in [0,n] igcap  | S_i }) 里的 (n + 1) 个数,一定存在一组 (i,j) 满足 (S_i equiv S_j mod n)
    (Q.E.D.)

    观察到物品只需保留不超过 (100) 个。

    设所有物品中性价比最高的物品编号为 (s)
    则最优方案中,性价比小于 (frac{b_s}{a_s}) 的物品数量不超过 (a_s)
    证明可以用到上述引理,若个数超过 (a_s) 一定可以选出来一些用物品 (s) 替换。
    所以超过 (100a_s) 的部分全部用来取第 (s) 件物品,剩下的完全背包即可。

    复杂度 (O(100 imes 100 a_s))

    (Source_1)

    #include <cstdio>
    #include <cstring>
    #include <algorithm>
    int in() {
        int x = 0; char c = getchar(); bool f = 0;
        while (c < '0' || c > '9')
            f |= c == '-', c = getchar();
        while (c >= '0' && c <= '9')
            x = (x << 1) + (x << 3) + (c ^ 48), c = getchar();
        return f ? -x : x;
    }
    long long lin() {
        long long x = 0; char c = getchar(); bool f = 0;
        while (c < '0' || c > '9')
            f |= c == '-', c = getchar();
        while (c >= '0' && c <= '9')
            x = (x << 1) + (x << 3) + (c ^ 48), c = getchar();
        return f ? -x : x;
    }
    template<typename T>inline void chk_min(T &_, T __) { _ = _ < __ ? _ : __; }
    template<typename T>inline void chk_max(T &_, T __) { _ = _ > __ ? _ : __; }
    
    const int N = 1e4;
    
    struct node {
        int a, b;
        inline bool operator < (const node& y) const {
            if (this->b * y.a == y.b * this->a)
                return this->a < this->a;
            return this->b * y.a > y.b * this->a;
        }
    } t[105];
    int max[105];
    
    int n, nn, f[N + N + 5];
    long long m, res;
    
    void backpack() {
        f[0] = 0;
        for (int i = 1; i <= n; ++i)
            for (int j = t[i].a; j <= nn; ++j)
                chk_max(f[j], f[j - t[i].a] + t[i].b);
    }
    
    int main() {
        //freopen("in", "r", stdin);
        freopen("backpack.in", "r", stdin);
        freopen("backpack.out", "w", stdout);
        n = in(), m = lin();
        memset(max, -1, sizeof(max));
        for (int i = 1, x, y; i <= n; ++i) {
            x = in(), y = in();
            chk_max(max[x], y);
        }
        n = 0;
        for (int i = 1; i <= 100; ++i)
            if (~max[i])
                t[++n] = (node){i, max[i]};
        std::sort(t + 1, t + 1 + n);
    
        if (m > N) {
            res = (m - N) / t[1].a * t[1].b;
            nn = (m - N) % t[1].a + N;
        } else {
            nn = m;
        }
        backpack();
        res += f[nn];
    
        printf("%lld
    ", res);
        return 0;
    }
    

    (Sol_2)

    这种数据范围很容易想到用矩阵来优化,可以试着构造一种矩阵运算 (*)
    设有两个矩阵 (A, B),且 (A * B = C)
    我们规定 (C_{i, j} = max_{k = 1} ^ {n} { A_{i, k} + B_{k, j} }) (类似矩阵乘法)。
    该运算的单位矩阵为:

    [left[ egin{matrix} 0 & -infin & -infin & cdots & -infin & -infin \ -infin & 0 & -infin & cdots & -infin & -infin \ -infin & -infin & 0 & cdots & -infin & -infin \ vdots & vdots & vdots & ddots & 0 & -infin \ -infin & -infin & -infin & cdots & -infin & 0 end{matrix} ight] ]

    并不难证明该运算有结合律,故快速 (*) (???)

    时间复杂度 (O(100 ^ 3 log_2 m))

    (Source_2)

    //#pragma GCC optimize(3,"Ofast","inline")
    #include <cstdio>
    #include <cstring>
    #include <algorithm>
    int in() {
        int x = 0; char c = getchar(); bool f = 0;
        while (c < '0' || c > '9')
            f |= c == '-', c = getchar();
        while (c >= '0' && c <= '9')
            x = (x << 1) + (x << 3) + (c ^ 48), c = getchar();
        return f ? -x : x;
    }
    long long lin() {
        long long x = 0; char c = getchar(); bool f = 0;
        while (c < '0' || c > '9')
            f |= c == '-', c = getchar();
        while (c >= '0' && c <= '9')
            x = (x << 1) + (x << 3) + (c ^ 48), c = getchar();
        return f ? -x : x;
    }
    template<typename T>inline void chk_min(T &_, T __) { _ = _ < __ ? _ : __; }
    template<typename T>inline void chk_max(T &_, T __) { _ = _ > __ ? _ : __; }
    
    const int N = 105;
    
    int max[105], n;
    long long m;
    
    struct matrix {
        long long a[N][N];
        matrix(long long _ = -1) {
            memset(a, -1, sizeof(a));
            if (~_)
                for (int i = 0; i < 100; ++i)
                    a[i][i] = _;
        }
        inline long long* operator [] (const int x) {
            return a[x];
        }
        matrix operator * (matrix b) const {
            matrix ret;
            for (int k = 0; k < 100; ++k)
                for (int i = 0; i < 100; ++i)
                    if (~a[i][k])
                        for (int j = 0; j < 100; ++j)
                            if (~b[k][j])
                                chk_max(ret[i][j], a[i][k] + b[k][j]);
            return ret;
        }
        matrix operator ^ (long long b) const {
            matrix ret(0), base = *this;
            for (; b; b >>= 1ll, base = base * base)
                if (b & 1ll)
                    ret = ret * base;
            return ret;
        }
    } ;
    
    void backpack(long long *f) {
        f[0] = 0;
        for (int i = 1; i <= 100; ++i) {
            if (~max[i]) {
                for (int j = i; j < 100; ++j) {
                    if (~f[j - i]) {
                        chk_max(f[j], f[j - i] + max[i]);
                    }
                }
            }
        }
    }
    
    int main() {
        //freopen("in", "r", stdin);
        freopen("backpack.in", "r", stdin);
        freopen("backpack.out", "w", stdout);
        n = in(), m = lin();
        memset(max, -1, sizeof(max));
        for (int i = 1, a, b; i <= n; ++i) {
            a = in(), b = in();
            chk_max(max[a], b); 
        }
        matrix f, trans;
        backpack(f[0]);
        for (int i = 0; i < 99; ++i)
            trans[i + 1][i] = 0;
        for (int i = 0; i < 100; ++i)
            trans[i][99] = max[100 - i];
        f = f * (trans ^ m);
        printf("%lld
    ", f[0][0]);
        return 0;
    }
    

    T2、中间值

    有两个长度为 (n (n leq 5 imes 10 ^ 5)) 的非降序列 (a,b)(m (m leq 10 ^ 6)) 次操作:
    1、修改 (a(0))(b(1)) 中的某个数,保证修改后依旧非降;
    2、求将某两个区间 ([l_a,r_a], [l_b,r_b]) 合并后中间的数,保证两区间长度和为奇数。

    (Sol_1)

    直接二分,细节较多;
    比如在 (l_a, r_a) 中二分到 (mid),只需判断 (a_{mid})(b) 中应该出现的位置是否合法即可。

    (Sol_2)

    考虑分治。
    设当前要求第 (k) 大元素,可能出现答案的区间为 ([l_a, r_a], [l_b, r_b])
    设两个区间中第 (frac{k}{2}) 大的元素为 (a_x, b_y) (不讨论边界);
    不妨设 (a_x < b_y),那么 (a) 中在 (x) 之前、(b) 中在 (y) 之后的数就不是答案,递归即可。

    以上两种做法都可以扩展到第 (k) 大,做法同上。
    时间复杂度都为 (O(m log_2 n))

    (Source)

    //#pragma GCC optimize(3,"Ofast","inline")
    #include <cstdio>
    #include <algorithm>
    int in() {
        int x = 0; char c = getchar(); bool f = 0;
        while (c < '0' || c > '9')
            f |= c == '-', c = getchar();
        while (c >= '0' && c <= '9')
            x = (x << 1) + (x << 3) + (c ^ 48), c = getchar();
        return f ? -x : x;
    }
    template<typename T>inline void chk_min(T &_, T __) { _ = _ < __ ? _ : __; }
    template<typename T>inline void chk_max(T &_, T __) { _ = _ > __ ? _ : __; }
    
    const int N = 5e5 + 5;
    
    int n, m, a[N], b[N];
    
    int binary_search(int xl, int xr, int yl, int yr, int *x, int *y) {
        int l = xl, r = xr, mid, t, k = (xr - xl + yr - yl + 3) >> 1;
        while (l < r) {
            mid = (l + r) >> 1;
            t = (k - 1) - (mid - xl) + yl;
            if (t < yl) {
                r = mid - 1;
                continue;
            } if (t > yr + 1) {
                l = mid + 1;
                continue;
            }
            if ((t == yr + 1 || y[t] >= x[mid]) && (t == yl || y[t - 1] <= x[mid]))
                return mid;
            if (y[t] < x[mid]) {
                r = mid - 1;
            } else if (y[t - 1] > x[mid]) {
                l = mid + 1;
            }
        }
        if (l == r) {
            t = (k - 1) - (l - xl) + yl;
            if ((t == yr + 1 || y[t] >= x[l]) && (t == yl || y[t - 1] <= x[l]))
                return l;
        }
        return -1;
    }
    
    int calc(int l1, int r1, int l2, int r2, int k) {
        if (l1 > r1)
            return b[l2 + k - 1];
        if (l2 > r2)
            return a[l1 + k - 1];
        if (k == 1)
            return a[l1] < b[l2] ? a[l1] : b[l2];
        int p1, p2;
        if (r1 - l1 + 1 < (k >> 1)) {
            p1 = r1 - l1 + 1;
            p2 = k - p1;
        } else if (r2 - l2 + 1 < ((k + 1) >> 1)) {
            p2 = r2 - l2 + 1;
            p1 = k - p2;
        } else {
            p1 = k >> 1;
            p2 = (k + 1) >> 1;
        }
        if (a[l1 + p1 - 1] < b[l2 + p2 - 1]) {
            return calc(l1 + p1, r1, l2, l2 + p2 - 1, p2);
        } else {
            return calc(l1, l1 + p1 - 1, l2 + p2, r2, p1);
        }
    }
    
    int main() {
        //freopen("in", "r", stdin);
        //freopen("out", "w", stdout);
        freopen("median.in", "r", stdin);
        freopen("median.out", "w", stdout);
        n = in(), m = in();
        for (int i = 1; i <= n; ++i)
            a[i] = in();
        for (int i = 1; i <= n; ++i)
            b[i] = in();
    
        int la, ra, lb, rb, res;
        while (m--) {
            if (in() == 1) {
                if (!in()) {
                    la = in();
                    a[la] = in();
                } else {
                    la = in();
                    b[la] = in();
                }
            } else {
                la = in(), ra = in(), lb = in(), rb = in();
                //printf("%d
    ", calc(la, ra, lb, rb, (ra - la + rb - lb + 3) >> 1));
                res = binary_search(la, ra, lb, rb, a, b);
                if (~res) {
                    printf("%d
    ", a[res]);
                } else {
                    res = binary_search(lb, rb, la, ra, b, a);
                    if (~res) {
                        printf("%d
    ", b[res]);
                    }
                }
            }
        }
        return 0;
    }
    

    T3、Sequence

    (f(A)) 表示所有长度为 (n (nleq 10 ^ {18})) 且满足 (forall i in [1,n] a_i | A) 的序列的价值和;
    一个序列的价值为 (gcd(a_1, a_2, a_3 dots a_n, B), (B leq 10 ^ {18}))
    (sum_{i = 1}^m f(i), (m leq 2 imes 10 ^ {7})),答案对 (998244353) 取模。

    (Sol)

    显然地,若 (gcd(x, y) = 1),则有 (gcd(xy, B) = gcd(x, B) imes gcd(y, B))
    同样地,若 (gcd(x, y) = 1),则 (f(xy)) 所对应的集合为 (f(x))(f(y)) 对应集合的笛卡尔积。
    (f(x)) 是一个积性函数。

    只需计算形如 (x = p ^ c)(f(x)) 即可,其中 (p) 是质数;
    (k) 满足 (p ^ k | B)(p ^ {k + 1} mid B),那么有:

    [egin{align} f(x) &= sum_{i = 0}^{c} p ^ i ig[ (c - i + 1) ^ n - (c - i) ^ n ig] , (c leq k) otag \ f(x) &= p ^ k (c - k + 1) ^ n + sum_{i = 0}^{k - 1} p ^ i ig[ (c - i + 1) ^ n - (c - i) ^ n ig] , (c > k) otag \ end{align} ]

    时间复杂度 (O(frac{m}{ln m} imeslog_? ^2 m)),计算 (f(p ^ c)) 时需要枚举 (c),这个 (log) 很小可以当做常数对待 (应该)

    (Source)

    //#pragma GCC optimize(3,"Ofast","inline")
    #include <cstdio>
    #include <algorithm>
    int in() {
        int x = 0; char c = getchar(); bool f = 0;
        while (c < '0' || c > '9')
            f |= c == '-', c = getchar();
        while (c >= '0' && c <= '9')
            x = (x << 1) + (x << 3) + (c ^ 48), c = getchar();
        return f ? -x : x;
    }
    long long lin() {
        long long x = 0; char c = getchar(); bool f = 0;
        while (c < '0' || c > '9')
            f |= c == '-', c = getchar();
        while (c >= '0' && c <= '9')
            x = (x << 1) + (x << 3) + (c ^ 48), c = getchar();
        return f ? -x : x;
    }
    template<typename T>inline void chk_min(T &_, T __) { _ = _ < __ ? _ : __; }
    template<typename T>inline void chk_max(T &_, T __) { _ = _ > __ ? _ : __; }
    
    const int N = 2e7 + 5, mod = 998244353;
    
    long long n, B;
    int m, pri_cnt, pri[N / 10], min_pri[N], f[N], Pow[105];
    std::pair<int, int> g[N];
    
    inline void add(int &_, int __) {
        _ += __;
        if (_ >= mod)
            _ -= mod;
    }
    
    int qpow(int base, int b, int ret = 1) {
        for (; b; b >>= 1, base = 1ll * base * base % mod)
            if (b & 1)
                ret = 1ll * ret * base % mod;
        return ret;
    }
    
    void Euler_sieve() {
        for (int i = 2; i <= m; ++i) {
            if (!min_pri[i]) {
                g[i].second = min_pri[i] = pri[++pri_cnt] = i;
                g[i].first = 1;
            }
            for (int j = 1, tmp; j <= pri_cnt && i * pri[j] <= m; ++j) {
                tmp = i * pri[j];
                g[tmp].second = min_pri[tmp] = pri[j];
                g[tmp].first = 1;
                if (!(i % pri[j])) {
                    g[tmp].first += g[i].first;
                    g[tmp].second *= g[i].second;
                    break;
                }
            }
        }
    }
    
    void calc_f() {
        int nn = n % (mod - 1);
        for (int i = 0; i <= 100; ++i)
            Pow[i] = qpow(i, nn);
        f[1] = 1;
        for (int i = 2; i <= m; ++i) {
            if (g[i].second == i) {
                for (int j = 0, tmp = 1; j <= g[i].first; ++j) {
                    add(f[i], 1ll * tmp * (Pow[g[i].first - j + 1] - Pow[g[i].first - j] + mod) % mod);
                    if (!((B / tmp) % min_pri[i]))
                        tmp *= min_pri[i];
                }
            } else {
                f[i] = 1ll * f[i / g[i].second] * f[g[i].second] % mod;
            }
        }
        for (int i = 1; i <= m; ++i)
            add(f[i], f[i - 1]);
    }
    
    int main() {
        //freopen("in", "r", stdin);
        freopen("sequence.in", "r", stdin);
        freopen("sequence.out", "w", stdout);
        n = lin(), m = in(), B = lin();
        Euler_sieve();
        calc_f();
        printf("%d
    ", f[m]);
        return 0;
    }
    
  • 相关阅读:
    怎样进行产品定位(上)
    crm2011创建货币Money类型的字段
    Cocos2dx 3.0 过渡篇(二十九)globalZOrder()与localZOrder()
    Linux显示全部执行中的进程
    How to Copy and Paste in the Ubuntu Gnome Terminal
    [LeetCode] Summary Ranges
    【Python】 做一个简单的 http server
    使用Visual Studio创建简单的自己定义Web Part 部件属性
    【windows socket+TCPserverclient】
    ACM-经典DP之Monkey and Banana——hdu1069
  • 原文地址:https://www.cnblogs.com/15owzLy1-yiylcy/p/11379610.html
Copyright © 2011-2022 走看看