zoukankan      html  css  js  c++  java
  • Affinity Propagation Demo1学习

    利用AP算法进行聚类:

    首先导入需要的包:

    from sklearn.cluster import AffinityPropagation
    from sklearn import metrics
    from sklearn.datasets.samples_generator import make_blobs

    生成一组数据:

    centers = [[1, 1], [-1, -1], [1, -1]]
    X, labels_true = make_blobs(n_samples=300, centers=centers, cluster_std=0.5, random_state=0)

    以上代码包括3个类簇的中心点以及300个以这3个点为中心的样本点。

    接下来要利用AP算法对这300个点进行聚类。

    af = AffinityPropagation(preference=-50).fit(X) # preference采用负的欧氏距离
    cluster_centers_indices = af.cluster_centers_indices_
    labels = af.labels_  # 样本标签
    n_clusters_ = len(cluster_centers_indices) # 类簇数

    打印各种评价指标分数:

    print('估计的类簇数: %d' % n_clusters_)
    print('Homogeneity: %0.3f' % metrics.homogeneity_score(labels_true, labels))
    print('Completeness: %0.3f' %metrics.completeness_score(labels_true, labels))
    print('V-measure: %0.3f' %metrics.v_measure_score(labels_true, labels))
    print('Adjusted Rand Index:%0.3f' %metrics.adjusted_rand_score(labels_true, labels))
    print('Adjusted Mutual Information:%0.3f'%metrics.adjusted_mutual_info_score(labels_true, labels))
    print('Silhouette Coefficient:%0.3f' %metrics.silhouette_score(X, labels, metric='sqeuclidean')) # sqeuclidean欧式距离平方

    可视化聚类结果:

    导入画图需要的包:

    import matplotlib.pyplot as plt
    from itertools import cycle
    plt.close('all')  
    plt.figure(1)
    plt.clf() # 清除当前图的所有信息
    colors = cycle('bgrcmykbgrcmykbgrcmykbgrcmyk')

    close()方法介绍【可忽略】
    close方法简介:
    
    matplotlib.pyplot.close(*args)   --- Close a figure window.
    close() by itself closes the current figure
    
    close(fig) closes the Figure instance fig
    
    close(num) closes the figure number num
    
    close(name) where name is a string, closes figure with that label
    
    close('all') closes all the figure windows
    View Code
    for k, col in zip(range(n_clusters_),colors):
        class_members = labels == k;
        print('k:',k)
        print('labels:',labels)
        print('cls_member--------',class_members)
      cluster_center = X[cluster_centers_indices[k]]
      print('cluster_center:', cluster_center)
       # 画样本点
      plt.plot(X[class_members, 0], X[class_members, 1], col + '.')
      # 画中心点
      plt.plot(cluster_center[0], cluster_center[1], 'o',
             markeredgecolor='k', markersize=28)
      
    # 划线
      for x in X[class_members]:
          plt.plot([cluster_center[0], x[0]], [cluster_center[1], x[1]], col)
     
    
    plt.title('Estimated number of clusters:%d' %n_clusters_)
    plt.show()# 显示图

    运行结果:

    完整代码:
    print(__doc__)
    
    from sklearn.cluster import AffinityPropagation
    from sklearn import metrics
    from sklearn.datasets.samples_generator import make_blobs
    
    # #################################################
    # generate sample data
    centers = [[1, 1], [-1, -1], [1, -1]]
    X, labels_true = make_blobs(n_samples=300, centers=centers, cluster_std=0.5, random_state=0)
    
    # #######################################################
    # Compute Affinity Propagation
    af = AffinityPropagation(preference=-50).fit(X) # preference采用负的欧氏距离
    cluster_centers_indices = af.cluster_centers_indices_
    labels = af.labels_  # 样本标签
    
    n_clusters_ = len(cluster_centers_indices) # 类簇数
    
    print('估计的类簇数: %d' % n_clusters_)
    print('Homogeneity: %0.3f' % metrics.homogeneity_score(labels_true, labels))
    print('Completeness: %0.3f' %metrics.completeness_score(labels_true, labels))
    print('V-measure: %0.3f' %metrics.v_measure_score(labels_true, labels))
    print('Adjusted Rand Index:%0.3f' %metrics.adjusted_rand_score(labels_true, labels))
    print('Adjusted Mutual Information:%0.3f'%metrics.adjusted_mutual_info_score(labels_true, labels))
    print('Silhouette Coefficient:%0.3f' %metrics.silhouette_score(X, labels, metric='sqeuclidean')) # sqeuclidean欧式距离平方
    
    # ##########################################################
    # Plot result
    import matplotlib.pyplot as plt
    from itertools import cycle
    
    plt.close('all')
    plt.figure(1)
    plt.clf()
    colors = cycle('bgrcmykbgrcmykbgrcmykbgrcmyk')
    for k, col in zip(range(n_clusters_),colors):
        class_members = labels == k;
        print('k:',k)
        print('labels:',labels)
        print('cls_member--------',class_members)
    
        cluster_center = X[cluster_centers_indices[k]]
        print('cluster_center:', cluster_center)
        plt.plot(X[class_members, 0], X[class_members, 1], col + '.')
        plt.plot(cluster_center[0], cluster_center[1], 'o',
                 markeredgecolor='k', markersize=28)
    
        # 划线
        for x in X[class_members]:
            plt.plot([cluster_center[0], x[0]], [cluster_center[1], x[1]], col)
    
    plt.title('Estimated number of clusters:%d' %n_clusters_)
    plt.show()
    View Code
    如有疑问请联系我,写的不对的地方请联系我进行更改,感谢~ QQ:1968380831
  • 相关阅读:
    C#中Dictionary<TKey,TValue>排序方式
    反射之取类中类的属性、变量名称及其值
    程序测试用的IE浏览器第二次无法加载入口程序的问题及其解决方法
    使用Windows Form 制作一个简易资源管理器
    如何查看自制词典的执行效率
    cocos2dx 3.12 eclipse编辑器切换到Android Studio
    Cordova安装使用
    Activity的启动模式
    踩坑集锦——MVC权限验证
    设计模式学习之路——策略模式
  • 原文地址:https://www.cnblogs.com/1zhangwenjing/p/9138378.html
Copyright © 2011-2022 走看看