ArrayBlockingQueue的原理和底层实现的数据结构 :
ArrayBlockingQueue是数组实现的线程安全的有界的阻塞队列,可以按照 FIFO(先进先出)原则对元素进行排序。
线程安全是指,ArrayBlockingQueue内部通过“互斥锁”保护竞争资源,实现了多线程对竞争资源的互斥访问。而有界,则是指ArrayBlockingQueue对应的数组是有界限的。 阻塞队列,是指多线程访问竞争资源时,当竞争资源已被某线程获取时,其它要获取该资源的线程需要阻塞等待;所谓公平的访问队列是指阻塞的线程,可以按照阻塞的先后顺序访问队列,先阻塞的线程先访问ArrayBlockingQueue队列。非公平性是对先等待的线程是非公平的,当队列可用时,阻塞的线程都可以争夺访问队列的资格,有可能先阻塞的线程最后才能够访问队列。然而为了保证公平性,通常会降低吞吐量。
1. ArrayBlockingQueue:基于数组实现的一个阻塞队列,在创建ArrayBlockingQueue对象时必须制定容量大小。 并且可以指定公平性与非公平性,默认情况下为非公平的,即不保证等待时间最长的队列最优先能够访问队列。
2.ArrayBlockingQueue内部通过Object[]数组保存数据的,也就是说ArrayBlockingQueue本质上是通过数组实现的。ArrayBlockingQueue的大小,即数组的容量是在创建创建ArrayBlockingQueue时候指定的。
3.如下图所示,ArrayBlockingQueue和ReentrantLock是组合关系,ArrayBlockingQueue中包含一个ReentrantLock对象。ReentrantLock是可重入的互斥锁。ArrayBlockingQueue就是根据ReentrantLock互斥锁实现"多线程对共享资源的访问"。ReentrantLock分为公平锁和非公平锁,关于具体使用公平锁还是非公平锁,在创建ArrayBlockingQueue时可以指定;而且,ArrayBlockingQueue默认会使用非公平锁。
4.ArrayBlockingQueue和Condition是组合关系,ArrayBlockingQueue中包含两个Condition对象(notEmpty和notFull)。使用通知模式实现:所谓通知模式,当生产者往满的队列里面添加元素的时候,会阻塞生产者(调用Condition notFull.await()进行等待);当消费者消费了一个队列中的元素后,会通知(调用Condition notFull.signal()唤醒生产者)生产者当前队列可用。反之,当消费者消费的时候,发现队列是空的,则消费者会被阻塞(通过Condition的 notEmpty.await()进行等待),当生产者插入了队列中的一个元素后,则会调用notEmpty.signal()唤醒消费者继续消费。
ArrayBlockingQueue的数据结构如下:
ArrayBlockingQueue方法列表:
// 创建一个带有给定的(固定)容量和默认访问策略的 ArrayBlockingQueue。 ArrayBlockingQueue(int capacity) // 创建一个具有给定的(固定)容量和指定访问策略的 ArrayBlockingQueue。 ArrayBlockingQueue(int capacity, boolean fair) // 创建一个具有给定的(固定)容量和指定访问策略的 ArrayBlockingQueue,它最初包含给定 collection 的元素,并以 collection 迭代器的遍历顺序添加元素。 ArrayBlockingQueue(int capacity, boolean fair, Collection<? extends E> c) // 将指定的元素插入到此队列的尾部(如果立即可行且不会超过该队列的容量),在成功时返回 true,如果此队列已满,则抛出 IllegalStateException。 boolean add(E e) // 自动移除此队列中的所有元素。 void clear() // 如果此队列包含指定的元素,则返回 true。 boolean contains(Object o) // 移除此队列中所有可用的元素,并将它们添加到给定 collection 中。 int drainTo(Collection<? super E> c) // 最多从此队列中移除给定数量的可用元素,并将这些元素添加到给定 collection 中。 int drainTo(Collection<? super E> c, int maxElements) // 返回在此队列中的元素上按适当顺序进行迭代的迭代器。 Iterator<E> iterator() // 将指定的元素插入到此队列的尾部(如果立即可行且不会超过该队列的容量),在成功时返回 true,如果此队列已满,则返回 false。 boolean offer(E e) // 将指定的元素插入此队列的尾部,如果该队列已满,则在到达指定的等待时间之前等待可用的空间。 boolean offer(E e, long timeout, TimeUnit unit) // 获取但不移除此队列的头;如果此队列为空,则返回 null。 E peek() // 获取并移除此队列的头,如果此队列为空,则返回 null。 E poll() // 获取并移除此队列的头部,在指定的等待时间前等待可用的元素(如果有必要)。 E poll(long timeout, TimeUnit unit) // 将指定的元素插入此队列的尾部,如果该队列已满,则等待可用的空间。 void put(E e) // 返回在无阻塞的理想情况下(不存在内存或资源约束)此队列能接受的其他元素数量。 int remainingCapacity() // 从此队列中移除指定元素的单个实例(如果存在)。 boolean remove(Object o) // 返回此队列中元素的数量。 int size() // 获取并移除此队列的头部,在元素变得可用之前一直等待(如果有必要)。 E take() // 返回一个按适当顺序包含此队列中所有元素的数组。 Object[] toArray() // 返回一个按适当顺序包含此队列中所有元素的数组;返回数组的运行时类型是指定数组的运行时类型。 <T> T[] toArray(T[] a) // 返回此 collection 的字符串表示形式。 String toString()
总结下上面的方法:
*非阻塞队列中的方法: * * 抛出异常的方法 Exception in thread "main" java.lang.IllegalStateException: Queue full *1. add(e) throw exception,将元素e插入到队列的末尾,如果插入成功,则返回true,如果插入失败 (队列已经满) 抛出异常 *2. remove(e) throw exception,移除队首元素,若移除成功,则返回true;若移除失败(队列为空)则抛出异常 *3. element() throw exception 获取队列首元素,若获取成功,则返回首元素,否则抛出异常 java.util.NoSuchElementException * * 返回特定值的方法 * * 1.offer(E e),将元素e插入到队列末尾,如果插入成功,则返回true,如果插入失败(队列已满),返回false * 2.poll(E e),移除并获取队首元素,若成功,则返回队首元素,否则返回null * 3.peek(E e),获取队首元素,若成功,则返回队首元素,否则则返回null
* 可以指定TimeOut:
*
* 3.offer(E e,long timeout, TimeUnit unit):向队列尾部存入元素e,如果队列满,则等待一定的时间,当达到timeout时候,则返回false,否则返回true
4.poll(long timeout, TimeUnit unit):从队首获取元素,如果队列为空,则等待一定时间,当达到timeout时,如果没有取到,则返回null,如果取到则返回取到的元素
阻塞队列中的几个重要方法:
* 1.put(E e) :用于队列尾部存入元素e,如果对满,则等待。 * 2.take():用于从对列首取出元素e,如果队列为空,则等待
注意:阻塞队列包括了非阻塞队列中的大部分方法,上面列举的5个方法在阻塞队列中都存在,但是要注意这5个方法在阻塞队列中都进行了同步措施,都是线程安全的。
ArrayBlockingQueue源码分析(JDK1.7)
/* * ORACLE PROPRIETARY/CONFIDENTIAL. Use is subject to license terms. * * * * * * * * * * * * * * * * * * * * */ /* * * * * * * Written by Doug Lea with assistance from members of JCP JSR-166 * Expert Group and released to the public domain, as explained at * http://creativecommons.org/publicdomain/zero/1.0/ */ package java.util.concurrent; import java.util.concurrent.locks.*; import java.util.*; /** * A bounded {@linkplain BlockingQueue blocking queue} backed by an * array. This queue orders elements FIFO (first-in-first-out). The * <em>head</em> of the queue is that element that has been on the * queue the longest time. The <em>tail</em> of the queue is that * element that has been on the queue the shortest time. New elements * are inserted at the tail of the queue, and the queue retrieval * operations obtain elements at the head of the queue. * * <p>This is a classic "bounded buffer", in which a * fixed-sized array holds elements inserted by producers and * extracted by consumers. Once created, the capacity cannot be * changed. Attempts to {@code put} an element into a full queue * will result in the operation blocking; attempts to {@code take} an * element from an empty queue will similarly block. * * <p>This class supports an optional fairness policy for ordering * waiting producer and consumer threads. By default, this ordering * is not guaranteed. However, a queue constructed with fairness set * to {@code true} grants threads access in FIFO order. Fairness * generally decreases throughput but reduces variability and avoids * starvation. * * <p>This class and its iterator implement all of the * <em>optional</em> methods of the {@link Collection} and {@link * Iterator} interfaces. * * <p>This class is a member of the * <a href="{@docRoot}/../technotes/guides/collections/index.html"> * Java Collections Framework</a>. * * @since 1.5 * @author Doug Lea * @param <E> the type of elements held in this collection */ public class ArrayBlockingQueue<E> extends AbstractQueue<E> implements BlockingQueue<E>, java.io.Serializable { /** * Serialization ID. This class relies on default serialization * even for the items array, which is default-serialized, even if * it is empty. Otherwise it could not be declared final, which is * necessary here. */ private static final long serialVersionUID = -817911632652898426L; /** The queued items */ final Object[] items; /** items index for next take, poll, peek or remove */ int takeIndex; /** items index for next put, offer, or add */ int putIndex; /** Number of elements in the queue */ int count; /* * Concurrency control uses the classic two-condition algorithm * found in any textbook. */ /** Main lock guarding all access */ final ReentrantLock lock; /** Condition for waiting takes */ private final Condition notEmpty; /** Condition for waiting puts */ private final Condition notFull; // Internal helper methods /** * Circularly increment i. */ final int inc(int i) { return (++i == items.length) ? 0 : i; } /** * Circularly decrement i. */ final int dec(int i) { return ((i == 0) ? items.length : i) - 1; } @SuppressWarnings("unchecked") static <E> E cast(Object item) { return (E) item; } /** * Returns item at index i. */ final E itemAt(int i) { return this.<E>cast(items[i]); } /** * Throws NullPointerException if argument is null. * * @param v the element */ private static void checkNotNull(Object v) { if (v == null) throw new NullPointerException(); } /** * Inserts element at current put position, advances, and signals. * Call only when holding lock. */ private void insert(E x) { items[putIndex] = x; putIndex = inc(putIndex); ++count; notEmpty.signal(); } /** * Extracts element at current take position, advances, and signals. * Call only when holding lock. */ private E extract() { final Object[] items = this.items; E x = this.<E>cast(items[takeIndex]); items[takeIndex] = null; takeIndex = inc(takeIndex); --count; notFull.signal(); return x; } /** * Deletes item at position i. * Utility for remove and iterator.remove. * Call only when holding lock. */ void removeAt(int i) { final Object[] items = this.items; // if removing front item, just advance if (i == takeIndex) { items[takeIndex] = null; takeIndex = inc(takeIndex); } else { // slide over all others up through putIndex. for (;;) { int nexti = inc(i); if (nexti != putIndex) { items[i] = items[nexti]; i = nexti; } else { items[i] = null; putIndex = i; break; } } } --count; notFull.signal(); } /** * Creates an {@code ArrayBlockingQueue} with the given (fixed) * capacity and default access policy. * * @param capacity the capacity of this queue * @throws IllegalArgumentException if {@code capacity < 1} */ public ArrayBlockingQueue(int capacity) { this(capacity, false); } /** * Creates an {@code ArrayBlockingQueue} with the given (fixed) * capacity and the specified access policy. * * @param capacity the capacity of this queue * @param fair if {@code true} then queue accesses for threads blocked * on insertion or removal, are processed in FIFO order; * if {@code false} the access order is unspecified. * @throws IllegalArgumentException if {@code capacity < 1} */ public ArrayBlockingQueue(int capacity, boolean fair) { if (capacity <= 0) throw new IllegalArgumentException(); this.items = new Object[capacity]; lock = new ReentrantLock(fair); notEmpty = lock.newCondition(); notFull = lock.newCondition(); } /** * Creates an {@code ArrayBlockingQueue} with the given (fixed) * capacity, the specified access policy and initially containing the * elements of the given collection, * added in traversal order of the collection's iterator. * * @param capacity the capacity of this queue * @param fair if {@code true} then queue accesses for threads blocked * on insertion or removal, are processed in FIFO order; * if {@code false} the access order is unspecified. * @param c the collection of elements to initially contain * @throws IllegalArgumentException if {@code capacity} is less than * {@code c.size()}, or less than 1. * @throws NullPointerException if the specified collection or any * of its elements are null */ public ArrayBlockingQueue(int capacity, boolean fair, Collection<? extends E> c) { this(capacity, fair); final ReentrantLock lock = this.lock; lock.lock(); // Lock only for visibility, not mutual exclusion try { int i = 0; try { for (E e : c) { checkNotNull(e); items[i++] = e; } } catch (ArrayIndexOutOfBoundsException ex) { throw new IllegalArgumentException(); } count = i; putIndex = (i == capacity) ? 0 : i; } finally { lock.unlock(); } } /** * Inserts the specified element at the tail of this queue if it is * possible to do so immediately without exceeding the queue's capacity, * returning {@code true} upon success and throwing an * {@code IllegalStateException} if this queue is full. * * @param e the element to add * @return {@code true} (as specified by {@link Collection#add}) * @throws IllegalStateException if this queue is full * @throws NullPointerException if the specified element is null */ public boolean add(E e) { return super.add(e); } /** * Inserts the specified element at the tail of this queue if it is * possible to do so immediately without exceeding the queue's capacity, * returning {@code true} upon success and {@code false} if this queue * is full. This method is generally preferable to method {@link #add}, * which can fail to insert an element only by throwing an exception. * * @throws NullPointerException if the specified element is null */ public boolean offer(E e) { checkNotNull(e); final ReentrantLock lock = this.lock; lock.lock(); try { if (count == items.length) return false; else { insert(e); return true; } } finally { lock.unlock(); } } /** * Inserts the specified element at the tail of this queue, waiting * for space to become available if the queue is full. * * @throws InterruptedException {@inheritDoc} * @throws NullPointerException {@inheritDoc} */ public void put(E e) throws InterruptedException { checkNotNull(e); final ReentrantLock lock = this.lock; lock.lockInterruptibly(); try { while (count == items.length) notFull.await(); insert(e); } finally { lock.unlock(); } } /** * Inserts the specified element at the tail of this queue, waiting * up to the specified wait time for space to become available if * the queue is full. * * @throws InterruptedException {@inheritDoc} * @throws NullPointerException {@inheritDoc} */ public boolean offer(E e, long timeout, TimeUnit unit) throws InterruptedException { checkNotNull(e); long nanos = unit.toNanos(timeout); final ReentrantLock lock = this.lock; lock.lockInterruptibly(); try { while (count == items.length) { if (nanos <= 0) return false; nanos = notFull.awaitNanos(nanos); } insert(e); return true; } finally { lock.unlock(); } } public E poll() { final ReentrantLock lock = this.lock; lock.lock(); try { return (count == 0) ? null : extract(); } finally { lock.unlock(); } } public E take() throws InterruptedException { final ReentrantLock lock = this.lock; lock.lockInterruptibly(); try { while (count == 0) notEmpty.await(); return extract(); } finally { lock.unlock(); } } public E poll(long timeout, TimeUnit unit) throws InterruptedException { long nanos = unit.toNanos(timeout); final ReentrantLock lock = this.lock; lock.lockInterruptibly(); try { while (count == 0) { if (nanos <= 0) return null; nanos = notEmpty.awaitNanos(nanos); } return extract(); } finally { lock.unlock(); } } public E peek() { final ReentrantLock lock = this.lock; lock.lock(); try { return (count == 0) ? null : itemAt(takeIndex); } finally { lock.unlock(); } } // this doc comment is overridden to remove the reference to collections // greater in size than Integer.MAX_VALUE /** * Returns the number of elements in this queue. * * @return the number of elements in this queue */ public int size() { final ReentrantLock lock = this.lock; lock.lock(); try { return count; } finally { lock.unlock(); } } // this doc comment is a modified copy of the inherited doc comment, // without the reference to unlimited queues. /** * Returns the number of additional elements that this queue can ideally * (in the absence of memory or resource constraints) accept without * blocking. This is always equal to the initial capacity of this queue * less the current {@code size} of this queue. * * <p>Note that you <em>cannot</em> always tell if an attempt to insert * an element will succeed by inspecting {@code remainingCapacity} * because it may be the case that another thread is about to * insert or remove an element. */ public int remainingCapacity() { final ReentrantLock lock = this.lock; lock.lock(); try { return items.length - count; } finally { lock.unlock(); } } /** * Removes a single instance of the specified element from this queue, * if it is present. More formally, removes an element {@code e} such * that {@code o.equals(e)}, if this queue contains one or more such * elements. * Returns {@code true} if this queue contained the specified element * (or equivalently, if this queue changed as a result of the call). * * <p>Removal of interior elements in circular array based queues * is an intrinsically slow and disruptive operation, so should * be undertaken only in exceptional circumstances, ideally * only when the queue is known not to be accessible by other * threads. * * @param o element to be removed from this queue, if present * @return {@code true} if this queue changed as a result of the call */ public boolean remove(Object o) { if (o == null) return false; final Object[] items = this.items; final ReentrantLock lock = this.lock; lock.lock(); try { for (int i = takeIndex, k = count; k > 0; i = inc(i), k--) { if (o.equals(items[i])) { removeAt(i); return true; } } return false; } finally { lock.unlock(); } } /** * Returns {@code true} if this queue contains the specified element. * More formally, returns {@code true} if and only if this queue contains * at least one element {@code e} such that {@code o.equals(e)}. * * @param o object to be checked for containment in this queue * @return {@code true} if this queue contains the specified element */ public boolean contains(Object o) { if (o == null) return false; final Object[] items = this.items; final ReentrantLock lock = this.lock; lock.lock(); try { for (int i = takeIndex, k = count; k > 0; i = inc(i), k--) if (o.equals(items[i])) return true; return false; } finally { lock.unlock(); } } /** * Returns an array containing all of the elements in this queue, in * proper sequence. * * <p>The returned array will be "safe" in that no references to it are * maintained by this queue. (In other words, this method must allocate * a new array). The caller is thus free to modify the returned array. * * <p>This method acts as bridge between array-based and collection-based * APIs. * * @return an array containing all of the elements in this queue */ public Object[] toArray() { final Object[] items = this.items; final ReentrantLock lock = this.lock; lock.lock(); try { final int count = this.count; Object[] a = new Object[count]; for (int i = takeIndex, k = 0; k < count; i = inc(i), k++) a[k] = items[i]; return a; } finally { lock.unlock(); } } /** * Returns an array containing all of the elements in this queue, in * proper sequence; the runtime type of the returned array is that of * the specified array. If the queue fits in the specified array, it * is returned therein. Otherwise, a new array is allocated with the * runtime type of the specified array and the size of this queue. * * <p>If this queue fits in the specified array with room to spare * (i.e., the array has more elements than this queue), the element in * the array immediately following the end of the queue is set to * {@code null}. * * <p>Like the {@link #toArray()} method, this method acts as bridge between * array-based and collection-based APIs. Further, this method allows * precise control over the runtime type of the output array, and may, * under certain circumstances, be used to save allocation costs. * * <p>Suppose {@code x} is a queue known to contain only strings. * The following code can be used to dump the queue into a newly * allocated array of {@code String}: * * <pre> * String[] y = x.toArray(new String[0]);</pre> * * Note that {@code toArray(new Object[0])} is identical in function to * {@code toArray()}. * * @param a the array into which the elements of the queue are to * be stored, if it is big enough; otherwise, a new array of the * same runtime type is allocated for this purpose * @return an array containing all of the elements in this queue * @throws ArrayStoreException if the runtime type of the specified array * is not a supertype of the runtime type of every element in * this queue * @throws NullPointerException if the specified array is null */ @SuppressWarnings("unchecked") public <T> T[] toArray(T[] a) { final Object[] items = this.items; final ReentrantLock lock = this.lock; lock.lock(); try { final int count = this.count; final int len = a.length; if (len < count) a = (T[])java.lang.reflect.Array.newInstance( a.getClass().getComponentType(), count); for (int i = takeIndex, k = 0; k < count; i = inc(i), k++) a[k] = (T) items[i]; if (len > count) a[count] = null; return a; } finally { lock.unlock(); } } public String toString() { final ReentrantLock lock = this.lock; lock.lock(); try { int k = count; if (k == 0) return "[]"; StringBuilder sb = new StringBuilder(); sb.append('['); for (int i = takeIndex; ; i = inc(i)) { Object e = items[i]; sb.append(e == this ? "(this Collection)" : e); if (--k == 0) return sb.append(']').toString(); sb.append(',').append(' '); } } finally { lock.unlock(); } } /** * Atomically removes all of the elements from this queue. * The queue will be empty after this call returns. */ public void clear() { final Object[] items = this.items; final ReentrantLock lock = this.lock; lock.lock(); try { for (int i = takeIndex, k = count; k > 0; i = inc(i), k--) items[i] = null; count = 0; putIndex = 0; takeIndex = 0; notFull.signalAll(); } finally { lock.unlock(); } } /** * @throws UnsupportedOperationException {@inheritDoc} * @throws ClassCastException {@inheritDoc} * @throws NullPointerException {@inheritDoc} * @throws IllegalArgumentException {@inheritDoc} */ public int drainTo(Collection<? super E> c) { checkNotNull(c); if (c == this) throw new IllegalArgumentException(); final Object[] items = this.items; final ReentrantLock lock = this.lock; lock.lock(); try { int i = takeIndex; int n = 0; int max = count; while (n < max) { c.add(this.<E>cast(items[i])); items[i] = null; i = inc(i); ++n; } if (n > 0) { count = 0; putIndex = 0; takeIndex = 0; notFull.signalAll(); } return n; } finally { lock.unlock(); } } /** * @throws UnsupportedOperationException {@inheritDoc} * @throws ClassCastException {@inheritDoc} * @throws NullPointerException {@inheritDoc} * @throws IllegalArgumentException {@inheritDoc} */ public int drainTo(Collection<? super E> c, int maxElements) { checkNotNull(c); if (c == this) throw new IllegalArgumentException(); if (maxElements <= 0) return 0; final Object[] items = this.items; final ReentrantLock lock = this.lock; lock.lock(); try { int i = takeIndex; int n = 0; int max = (maxElements < count) ? maxElements : count; while (n < max) { c.add(this.<E>cast(items[i])); items[i] = null; i = inc(i); ++n; } if (n > 0) { count -= n; takeIndex = i; notFull.signalAll(); } return n; } finally { lock.unlock(); } } /** * Returns an iterator over the elements in this queue in proper sequence. * The elements will be returned in order from first (head) to last (tail). * * <p>The returned {@code Iterator} is a "weakly consistent" iterator that * will never throw {@link java.util.ConcurrentModificationException * ConcurrentModificationException}, * and guarantees to traverse elements as they existed upon * construction of the iterator, and may (but is not guaranteed to) * reflect any modifications subsequent to construction. * * @return an iterator over the elements in this queue in proper sequence */ public Iterator<E> iterator() { return new Itr(); } /** * Iterator for ArrayBlockingQueue. To maintain weak consistency * with respect to puts and takes, we (1) read ahead one slot, so * as to not report hasNext true but then not have an element to * return -- however we later recheck this slot to use the most * current value; (2) ensure that each array slot is traversed at * most once (by tracking "remaining" elements); (3) skip over * null slots, which can occur if takes race ahead of iterators. * However, for circular array-based queues, we cannot rely on any * well established definition of what it means to be weakly * consistent with respect to interior removes since these may * require slot overwrites in the process of sliding elements to * cover gaps. So we settle for resiliency, operating on * established apparent nexts, which may miss some elements that * have moved between calls to next. */ private class Itr implements Iterator<E> { private int remaining; // Number of elements yet to be returned private int nextIndex; // Index of element to be returned by next private E nextItem; // Element to be returned by next call to next private E lastItem; // Element returned by last call to next private int lastRet; // Index of last element returned, or -1 if none Itr() { final ReentrantLock lock = ArrayBlockingQueue.this.lock; lock.lock(); try { lastRet = -1; if ((remaining = count) > 0) nextItem = itemAt(nextIndex = takeIndex); } finally { lock.unlock(); } } public boolean hasNext() { return remaining > 0; } public E next() { final ReentrantLock lock = ArrayBlockingQueue.this.lock; lock.lock(); try { if (remaining <= 0) throw new NoSuchElementException(); lastRet = nextIndex; E x = itemAt(nextIndex); // check for fresher value if (x == null) { x = nextItem; // we are forced to report old value lastItem = null; // but ensure remove fails } else lastItem = x; while (--remaining > 0 && // skip over nulls (nextItem = itemAt(nextIndex = inc(nextIndex))) == null) ; return x; } finally { lock.unlock(); } } public void remove() { final ReentrantLock lock = ArrayBlockingQueue.this.lock; lock.lock(); try { int i = lastRet; if (i == -1) throw new IllegalStateException(); lastRet = -1; E x = lastItem; lastItem = null; // only remove if item still at index if (x != null && x == items[i]) { boolean removingHead = (i == takeIndex); removeAt(i); if (!removingHead) nextIndex = dec(nextIndex); } } finally { lock.unlock(); } } } }
下面从ArrayBlockingQueue的创建,添加,取出,遍历这几个方面对ArrayBlockingQueue进行分析。
1.创建:
/** * Creates an {@code ArrayBlockingQueue} with the given (fixed) * capacity and default access policy. * * @param capacity the capacity of this queue * @throws IllegalArgumentException if {@code capacity < 1}
只是指定ArrayBlockingQueue的容量,默认采用非公平互斥锁
*/ public ArrayBlockingQueue(int capacity) { this(capacity, false); }
/** * Creates an {@code ArrayBlockingQueue} with the given (fixed) * capacity and the specified access policy. * * @param capacity the capacity of this queue * @param fair if {@code true} then queue accesses for threads blocked * on insertion or removal, are processed in FIFO order; * if {@code false} the access order is unspecified. * @throws IllegalArgumentException if {@code capacity < 1}
指定容量和ReetrantLock的类型是否为公平锁创建阻塞队列 */ public ArrayBlockingQueue(int capacity, boolean fair) { if (capacity <= 0) throw new IllegalArgumentException(); this.items = new Object[capacity]; lock = new ReentrantLock(fair); notEmpty = lock.newCondition(); notFull = lock.newCondition(); }
上面源码进行说明:
items是保存“阻塞队列”数据的数组。它的定义如下:
/** The queued items */ final Object[] items;
fair是“可重入的独占锁(ReentrantLock)”的类型。fair为true,表示是公平锁;fair为false,表示是非公平锁。notEmpty和notFull是锁的两个Condition条件。它们的定义如下:
/** Main lock guarding all access */ final ReentrantLock lock; /** Condition for waiting takes */ private final Condition notEmpty; /** Condition for waiting puts */ private final Condition notFull;
说明:Lock的作用是提供独占锁机制,来保护竞争的资源;而Condition是为了更精细的对锁进行控制,但是依赖于lock,通过某个条件对多线程进行控制。
notEmpty表示"锁的非空条件"。当某线程想从队列中获取数据的时候,而此时队列中的数据为空,则该线程通过notEmpty.await()方法进行等待;
当其他线程向队列中插入元素之后,就调用notEmpty.signal()方法进行唤醒之前等待的线程。同理,notFull表示“锁满的条件“。当某个线程向队列中插入元素
,而此时队列已满时,该线程等待,即阻塞通过notFull.wait()方法;其他线程从队列中取出元素之后,就唤醒该等待的线程,这个线程调用notFull.signal()方法。
2.添加:
/** * Inserts the specified element at the tail of this queue, waiting * for space to become available if the queue is full. * * @throws InterruptedException {@inheritDoc} * @throws NullPointerException {@inheritDoc}
添加元素,当队列满的时候,该线程等待,即阻塞。 */ public void put(E e) throws InterruptedException {
//校验插入的元素不能为null checkNotNull(e); final ReentrantLock lock = this.lock; lock.lockInterruptibly(); try {
//队列满的时候 while (count == items.length)
//线程调用await方法阻塞 notFull.await(); insert(e); } finally { lock.unlock(); } }
/** items index for next take, poll, peek or remove
下一个被取出元素的索引
*/ int takeIndex; /** items index for next put, offer, or add
下一个被添加元素的索引
*/ int putIndex; /** Number of elements in the queue
队列中的元素的个数
*/ int count;
/** * Inserts element at current put position, advances, and signals. * Call only when holding lock. */ private void insert(E x) { items[putIndex] = x; putIndex = inc(putIndex);
//队列中的元素个数 ++count;
//唤醒notEmpty Condition锁上面等待的线程,告诉该线程队列不为空了,可以消费了 notEmpty.signal(); }
/** * Circularly increment i.
队列中的元素个数==队列的长度的时候,队列满,则设置下一个被添加元素的索引为0 */ final int inc(int i) { return (++i == items.length) ? 0 : i; }
2.取出:
public E take() throws InterruptedException { final ReentrantLock lock = this.lock;
//获取锁,如果当前线程是中断状态,则抛出interruptedException异常 lock.lockInterruptibly(); try {
//队列为空的时候,则线程一直阻塞等待 while (count == 0) notEmpty.await();
//取元素 return extract(); } finally { lock.unlock(); } }
/** * Extracts element at current take position, advances, and signals. * Call only when holding lock. */ private E extract() { final Object[] items = this.items;
//强制将元素转化为"泛型E" E x = this.<E>cast(items[takeIndex]); items[takeIndex] = null;
//设置下一个被取出元素的索引 takeIndex = inc(takeIndex);
//将队列中的元素-1 --count;
//唤醒notFull条件上面等待的线程,告诉该线程队列不是满的了,可以添加元素了 notFull.signal(); return x; }