编写脚本的时候经常会涉及到对data.frame或matrix类型数据的操作,比如取指定列、取指定行、排除指定列或行、根据条件取满足条件的列或行等。在R中,这些操作都是可以通过简单的一条语句就能够实现的,非常的简洁优美~
下面就是一个小小的总结:
1. 对data.frame或matrix取指定行
data[i,] #取data中的第i行
data[c(i,j,k),] #取data中的第i,j,k行
取指定列的操作同理可得
2. 对data.frame或matrix删除指定行
data[-i,] #排除data中的第i行
data[c(-i,-j,-k),] #排除data中的第i,j,k行
3. 根据条件取满足条件的行
例如:
假定data为data.frame类型,第一列列名为type,取type为I的所有行:
data[data$type=='I',]
假定data为matrix类型,取第一列为I的所有行:
data[data[,1]=='I',]
*******************************************************************
2:无名称的数据框
2.1建立:
> tmp_frame<-data.frame(c(1:10),c(1),c(10:1));tmp_frame
c.1.10. c.1. c.10.1.
1 1 1 10
2 2 1 9
3 3 1 8
4 4 1 7
5 5 1 6
6 6 1 5
7 7 1 4
8 8 1 3
9 9 1 2
10 10 1 1
默认左侧是列序号,不足的项使用重复项列出(不是0)
2.2数据索引-无名称:
============点==========================
2.2.1 直接读取点数据
> tmp_frame[10,1]
[1] 10
===========行===========================
2.2.2 读取1行并产生数据框
> tmp_frame[3,](一个1行3列的数据框)
c.1.10. c.1. c.10.1.
3 3 1 8
2.2.3 读取n行并产生数据框
> tmp_frame[1:3,](是3行3列的数据框。依据行读取部分)
c.1.10. c.1. c.10.1.
1 1 1 10
2 2 1 9
3 3 1 8
===========列==========================
2.2.4 读取1列并产生数据框
tmp_frame[1](是1行10列的数据框)
c.1.10.
1 1
2 2
3 3
4 4
5 5
6 6
7 7
8 8
9 9
10 10
2.2.5 读取n列并产生数据框
> tmp_frame[1:2](是10行2列的数据框。依据列读取部分)
c.1.10. c.1.
1 1 1
2 2 1
3 3 1
4 4 1
5 5 1
6 6 1
7 7 1
8 8 1
9 9 1
10 10 1
2.2.6 读取1列并产生向量
> tmp_frame[,1]
[1] 1 2 3 4 5 6 7 8 9 10
(注意tmp_frame[,1:2]和tmp_frame[1:2]一样,均是数据框)
> tmp_frame[1:3,3]
[1] 10 9 8
===========列序号地址================
2.2.7which函数
> which(tmp_frame[,3]==9)(向量tmp_frame[,3]等于9的序号地址—一个则是点数据)
[1] 2
> which(tmp_frame[,2]==1)(向量tmp_frame[,2]等于1的序号地址—多个则是向量)
[1] 1 2 3 4 5 6 7 8 9 10
> tmp_frame[which(tmp_frame[,3]==9),1](行为tmp_frame的第3列等于9的行,列为1 的点数据)—推荐
[1] 2
3有名称的数据框
3.1添加名称
定义时,直接定义列名称—推荐
> tmp_frame<-data.frame(a=c(1:10),b=c(1),k=c(10:1));tmp_frame
a b k
1 1 1 10
2 2 1 9
3 3 1 8
4 4 1 7
5 5 1 6
6 6 1 5
7 7 1 4
8 8 1 3
9 9 1 2
10 10 1 1
定义后,再直接定义列名称
> colnames(tmp_frame)<-c(“a1″,”b1″,”k1″);tmp_frame
a1 b1 k1
1 1 1 10
2 2 1 9
3 3 1 8
4 4 1 7
5 5 1 6
6 6 1 5
7 7 1 4
8 8 1 3
9 9 1 2
10 10 1 1
定义后,再直接定义行名称
> rownames(tmp_frame)<-c(“row1″,”row2″,”row3″,”row4″,”row5″,”row6″,”row7″,”row8″,”row9″,”row10″);tmp_frame
a1 b1 k1
row1 1 1 10
row2 2 1 9
row3 3 1 8
row4 4 1 7
row5 5 1 6
row6 6 1 5
row7 7 1 4
row8 8 1 3
row9 9 1 2
row10 10 1 1
3.2数据索引
3.2.1读取列组成向量—推荐
> tmp_frame$a1
[1] 1 2 3 4 5 6 7 8 9 10
3.2.2读取点数据
> tmp_frame$k1[4](是4行3列的点数据)—推荐
[1] 7
> tmp_frame[4,]$k1(是4行3列的点数据)
[1] 7
4数据框扩展
4.1行扩展
> rbind(tmp_frame,c(2,5,9))
a1 b1 k1
row1 1 1 10
row2 2 1 9
row3 3 1 8
row4 4 1 7
row5 5 1 6
row6 6 1 5
row7 7 1 4
row8 8 1 3
row9 9 1 2
row10 10 1 1
11 2 5 9
> rbind(tmp_frame,row11=c(2,5,9))
a1 b1 k1
row1 1 1 10
row2 2 1 9
row3 3 1 8
row4 4 1 7
row5 5 1 6
row6 6 1 5
row7 7 1 4
row8 8 1 3
row9 9 1 2
row10 10 1 1
row11 2 5 9
4.2列扩展
> cbind(tmp_frame,k11=c(2,5,9,1:7))
a1 b1 k1 k11
row1 1 1 10 2
row2 2 1 9 5
row3 3 1 8 9
row4 4 1 7 1
row5 5 1 6 2
row6 6 1 5 3
row7 7 1 4 4
row8 8 1 3 5
row9 9 1 2 6
row10 10 1 1 7