Follow up for “Unique Paths”:
Now consider if some obstacles are added to the grids. How many unique paths would there be?
An obstacle and empty space is marked as 1 and 0 respectively in the grid.
For example,
There is one obstacle in the middle of a 3×3 grid as illustrated below.
[
[0,0,0],
[0,1,0],
[0,0,0]
]
The total number of unique paths is 2.
分析
这道题和unique path I 没有本质区别,动态转移方程是dp[i][j]=obstacleGrid[i][j]==1?0:dp[i][j-1]+dp[i-1][j];
class Solution {
public:
int uniquePathsWithObstacles(vector<vector<int>>& obstacleGrid) {
vector<vector<int>> dp(obstacleGrid.size(),vector<int>(obstacleGrid[0].size(),0));
if(obstacleGrid[0][0]==1) return 0;
else dp[0][0]=1;
for(int i=1;i<obstacleGrid[0].size();i++)
dp[0][i]=obstacleGrid[0][i]==1?0:dp[0][i-1];
for(int i=1;i<obstacleGrid.size();i++)
dp[i][0]=obstacleGrid[i][0]==1?0:dp[i-1][0];
for(int i=1;i<obstacleGrid.size();i++)
for(int j=1;j<obstacleGrid[0].size();j++)
dp[i][j]=obstacleGrid[i][j]==1?0:dp[i-1][j]+dp[i][j-1];
return dp[obstacleGrid.size()-1][obstacleGrid[0].size()-1];
}
};