zoukankan      html  css  js  c++  java
  • PAT 1135 Is It A Red-Black Tree

    There is a kind of balanced binary search tree named red-black tree in the data structure. It has the following 5 properties:

    (1) Every node is either red or black.
    (2) The root is black.
    (3) Every leaf (NULL) is black.
    (4) If a node is red, then both its children are black.
    (5) For each node, all simple paths from the node to descendant leaves contain the same number of black nodes.
    For example, the tree in Figure 1 is a red-black tree, while the ones in Figure 2 and 3 are not.


    Figure 1               Figure 2            Figure 3

    For each given binary search tree, you are supposed to tell if it is a legal red-black tree.

    Input Specification:
    Each input file contains several test cases. The first line gives a positive integer K (≤30) which is the total number of cases. For each case, the first line gives a positive integer N (≤30), the total number of nodes in the binary tree. The second line gives the preorder traversal sequence of the tree. While all the keys in a tree are positive integers, we use negative signs to represent red nodes. All the numbers in a line are separated by a space. The sample input cases correspond to the trees shown in Figure 1, 2 and 3.

    Output Specification:
    For each test case, print in a line "Yes" if the given tree is a red-black tree, or "No" if not.

    Sample Input:

    3
    9
    7 -2 1 5 -4 -11 8 14 -15
    9
    11 -2 1 -7 5 -4 8 14 -15
    8
    10 -7 5 -6 8 15 -11 17

    Sample Output:

    Yes
    No
    No

    #include<iostream> //偏难
    #include<vector>
    #include<math.h>
    using namespace std;
    struct node{
      int val;
      node* left;
      node* right;
      node(int v):val(v), left(NULL), right(NULL){
      }
    };
    vector<int> a, pre;
    int cnt=0, flag=0;
    node* buildtree(node* t, int b, int e){
      if(b>e) return NULL; 
      t=new node(a[b]);
      int i=b+1;
      while(i<=e&&abs(a[i])<abs(a[b])) i++;
      t->left=buildtree(t->left, b+1, i-1);
      t->right=buildtree(t->right, i, e);
      return t;
    }
    bool isBTree(node* root, int num){
    	if(!root)
    		if(num!=cnt)
    			return false;
    		else
    			return true;
    	if(root->val>0) num++;
    	else{
    		if(root->right&&root->right->val<0) return false;
    		if(root->left&&root->left->val<0) return false;
    	}
    	return isBTree(root->left, num)&&isBTree(root->right, num);	
    }
    int main(){
      int k, n;
      cin>>k;
      for(int i=0; i<k; i++){
        cin>>n;
        a.clear();
        a.resize(n);
        cnt=0;
        for(int j=0; j<n; j++)
          cin>>a[j];
        node* root=NULL;
        root=buildtree(root, 0, n-1);
        node* temp=root;
        while(temp){
        	cnt=(temp->val>0?cnt+1:cnt); 
        	temp=temp->left;
    	}
    	if(isBTree(root, 0)&&root->val>0)
    		cout<<"Yes"<<endl;
    	else
    		cout<<"No"<<endl;
      }
       return 0;
    }
    
  • 相关阅读:
    如何成为一名数据科学家
    暑假反思
    暑假计划(7月23日-8月21日)
    ACM数论模板
    Nelder–Mead method
    Introduction to Data Mining
    51_1037最长循环节 (miller rabin算法 pollard rho算法 原根)
    乘法逆元(转)
    51_1228 序列求和(伯努利数)(转)
    清除input中内容的简单方法
  • 原文地址:https://www.cnblogs.com/A-Little-Nut/p/9651938.html
Copyright © 2011-2022 走看看