zoukankan      html  css  js  c++  java
  • hdu3976(Electric resistance) 高斯消元

    Electric resistance

    Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
    Total Submission(s): 907    Accepted Submission(s): 521


    Problem Description
    Now give you a circuit who has n nodes (marked from 1 to n) , please tell abcdxyzk the equivalent resistance of the circuit between node 1 and node n. You may assume that the circuit is connected. The equivalent resistance of the circuit between 1 and n is that, if you only consider node 1 as positive pole and node n as cathode , all the circuit could be regard as one resistance . (It's important to analyse complicated circuit ) At most one resistance will between any two nodes.
     
    Input
    In the first line has one integer T indicates the number of test cases. (T <= 100)

    Each test first line contain two number n m(1<n<=50,0<m<=2000), n is the number of nodes, m is the number of resistances.Then follow m lines ,each line contains three integers a b c, which means there is one resistance between node a and node b whose resistance is c. (1 <= a,b<= n, 1<=c<=10^4) You may assume that any two nodes are connected!
     
    Output
    for each test output one line, print "Case #idx: " first where idx is the case number start from 1, the the equivalent resistance of the circuit between 1 and n. Please output the answer for 2 digital after the decimal point .
     
    Sample Input
    1
    4 5
    1 2 1
    2 4 4
    1 3 8
    3 4 19
    2 3 12
     
    Sample Output
    Case #1: 4.21
     
     
    题意:给一个N个结点的电路图,任意两个结点均联通,
    任意两点之间最多有一个电阻,求结点1与N之间的等效电阻。
     
    分析:外加电流源求等效电阻,用结点电压法,以结点1为参考结点U0=0,
    即把结点1作为电势零点,结点2,3,4,...,N的电势为Un1,Un2,Un3,...,Un(N-1),
    一共N-1个未知数,再在结点1与结点N之间加一个电流源I,列结点电压方程,
    那么一共可列N-1个独立方程(含N-1个未知数),再用高斯消元解方程(一定有解),
    解出Un(N-1),等效电阻R=(Un(N-1)-U0)/I=Un(N-1)/I,为方便计算取I=1.0A,
    那么R=Un(N-1).
     
    #include<cstdio>
    #include<cstring>
    #include<algorithm>
    #include<cmath>
    using namespace std;
    double a[60][60];
    void Guass(int N,int M)
    {
        for(int i=1;i<=N;i++)//i是列数,一个一个消去
        {//上三角 
            if(fabs(a[i][i])<1e-6)//第i行第i个为0 
            {//找出i+1到第M行中,第i个数不为0的行 
                int p=M;
                for(;p>i;p--)
                if(fabs(a[p][i])>1e-6) break;
                if(p==i) continue;
                else swap(a[i],a[p]);//交换i,p两行 
            }
            for(int k=i+1;k<=M;k++)
            {
                for(int j=i+1;j<=N+1;j++)
                {
                    a[k][j]-=a[i][j]/a[i][i]*a[k][i];
                }
                a[k][i]=0;
            }
        }
        //从下往上消去 
        for(int i=N;i;i--)//第i个解 
        {
            for(int k=i-1;k;k--)//消去1到i-1行的第i个元素
            {
                a[k][N+1]-=a[i][N+1]/a[i][i]*a[k][i];
                a[k][i]=0;
            }
        }
    }
    
    int main()
    {
        int T,cas=0;
        int N,M;//N个结点M条支路 
        scanf("%d",&T);
        while(T--)
        {
            memset(a,0,sizeof(a)); 
            scanf("%d%d",&N,&M);
            for(int i=0;i<M;i++)
            {
                int s,t;double r;
                scanf("%d%d%lf",&s,&t,&r);
                //结点电压法 
                if(s==1) a[t-1][t-1]+=1.0/r;
                else if(t==1) a[s-1][s-1]+=1.0/r;
                else
                {
                    a[s-1][s-1]+=1.0/r;a[s-1][t-1]-=1.0/r;
                    a[t-1][t-1]+=1.0/r;a[t-1][s-1]-=1.0/r;
                }
            }
            a[N-1][N]=1.0;//外加电流源 
            Guass(N-1,N-1);//N-1个未知数 
            printf("Case #%d: %.2lf
    ",++cas,fabs(a[N-1][N]/a[N-1][N-1]));
        }
        return 0;
    }
    View Code
     
     
  • 相关阅读:
    tree related problems (update continuously)
    [单元測试]_[VC2010使用gtest单元測试入门]
    generate alphanumeric serial number
    UiAutomator源代码分析之获取控件信息
    Fckeditor常见漏洞的挖掘与利用整理汇总
    AsyncAwait
    .Net异步编程知多少
    ParameterizedThreadStart task
    AsyncAwait 学习
    8天玩转并行开发——第八天 用VS性能向导解剖你的程序
  • 原文地址:https://www.cnblogs.com/ACRykl/p/8711227.html
Copyright © 2011-2022 走看看