zoukankan      html  css  js  c++  java
  • 洛谷P4721 分治FFT

    给定序列 (g_{1,dots,n-1}) 求序列 (f_{0,dots,n-1}),其中

    [f_i=sum_{j=1}^{i}f_{i-j}g_j\ f_0=1 ]

    现在要求 (f_{[l,r]}),首先假设我们已经计算出 (f_{[l,mid]}),这一部分对 (f_{[mid+1,r]}) 的贡献为 (f_{[l,mid]}*g_{[1,r-l]}),只要先算出来再加到对应位置上就行了。时间复杂度 (O(nlog^2n))

    Code

    #include <bits/stdc++.h>
    using namespace std;
    
    #define RG register int
    #define LL long long
    
    template<typename elemType>
    inline void Read(elemType& T) {
        elemType X = 0, w = 0; char ch = 0;
        while (!isdigit(ch)) { w |= ch == '-';ch = getchar(); }
        while (isdigit(ch)) X = (X << 3) + (X << 1) + (ch ^ 48), ch = getchar();
        T = (w ? -X : X);
    }
    
    const int maxn = 2100000;
    
    LL qpow(LL b, LL n, LL MOD) {
        if (MOD == 1) return 0;
        LL x = 1, Power = b % MOD;
        while (n) {
            if (n & 1) x = x * Power % MOD;
            Power = Power * Power % MOD;
            n >>= 1;
        }
        return x;
    }
    
    namespace Poly {
        int r[maxn];
        int L, limit;
        const LL P = 998244353, G = 3, Gi = 332748118;
    
        LL pinv(LL x) { return qpow(x, P - 2, P); }
    
        //快速数论变换 type=1:正变换 type=-1:逆变换
        void NTT(LL* A, int type) {
            for (int i = 0; i < limit; i++)
                if (i < r[i]) swap(A[i], A[r[i]]);
            for (int mid = 1; mid < limit; mid <<= 1) {
                LL Wn = qpow(type == 1 ? G : Gi, (P - 1) / (mid << 1), P);
                for (int j = 0; j < limit; j += (mid << 1)) {
                    LL w = 1;
                    for (int k = 0; k < mid; k++, w = (w * Wn) % P) {
                        int x = A[j + k], y = w * A[j + k + mid] % P;
                        A[j + k] = (x + y) % P;
                        A[j + k + mid] = (x - y + P) % P;
                    }
                }
            }
            if (type == 1) return;
            LL inv_limit = pinv(limit);
            for (int i = 0; i < limit; ++i)
                A[i] = A[i] * inv_limit % P;
        }
    
        //多项式卷积 a(x): N-1次多项式 b(x): M-1次多项式
        void Conv(LL* a, int N, LL* b, LL M, LL* c) {
            L = 0; limit = 1;
            while (limit <= N + M) limit <<= 1, L++;
            fill(a + N, a + limit, 0);
            fill(b + M, b + limit, 0);
            fill(c, c + limit, 0);
            for (int i = 0; i < limit; i++) r[i] = (r[i >> 1] >> 1) | ((i & 1) << (L - 1));
            NTT(a, 1); NTT(b, 1);
            for (int i = 0; i < limit; i++) c[i] = a[i] * b[i] % P;
            NTT(c, -1);
        }
    
        LL bufA[maxn], bufB[maxn], bufC[maxn];
    
        void CDQ_NTT(LL* f, LL* g, int L, int R) {
            if (L == R) return;
            int mid = (L + R) >> 1;
            CDQ_NTT(f, g, L, mid);
            int p = 0; for (int i = L;i <= mid;++i) bufA[p++] = f[i];
            int q = 0; for (int i = 1;i <= R - L;++i) bufB[q++] = g[i];
            Conv(bufA, p, bufB, q, bufC);
            for (int i = 0;i + mid + 1 <= R;++i)
                f[i + mid + 1] = (f[i + mid + 1] + bufC[i + mid - L]) % P;
            CDQ_NTT(f, g, mid + 1, R);
        }
    }
    
    LL f[maxn], g[maxn];
    int n;
    
    int main() {
        Read(n);
        f[0] = 1;
        for (int i = 1;i <= n - 1;++i) Read(g[i]);
        Poly::CDQ_NTT(f, g, 0, n - 1);
        for (int i = 0;i < n;++i) {
            printf("%lld", f[i]);
            if (i + 1 < n) printf(" ");
        }
        printf("
    ");
    
        return 0;
    }
    
  • 相关阅读:
    TensorFlow进阶(六)---模型保存与恢复、自定义命令行参数
    TensorFlow进阶(五)---图与会话
    TensorFlow进阶(四)---名称域和共享变量
    spark中数据倾斜解决方案
    Hive窗口函数之LAG、LEAD、FIRST_VALUE、LAST_VALUE的用法
    java.lang.RuntimeException: HRegionServer Aborted
    hive中的优化问题
    读取hbase数据到mysql
    用mapreduce读取hdfs数据到hbase上
    centos7下安装elasticSearch错误总结(单节点模式)
  • 原文地址:https://www.cnblogs.com/AEMShana/p/15128314.html
Copyright © 2011-2022 走看看