Time Limit: 1 second
Memory Limit: 50 MB
【问题背景】
近来,一种新的传染病肆虐全球。蓬莱国也发现了零星感染者,为防止该病在蓬莱国 大范围流行,该国政府决定不惜一切代价控制传染病的蔓延。不幸的是,由于人们尚未完 全
认识这种传染病,难以准确判别病毒携带者,更没有研制出疫苗以保护易感人群。于是, 蓬莱国的疾病控制中心决定采取切断传播途径的方法控制疾病传播。经过 WHO(世界卫 生组织)
以及全球各国科研部门的努力,这种新兴传染病的传播途径和控制方法已经研究 消楚,剩下的任务就是由你协助蓬莱国疾控中心制定一个有效的控制办法。
【问题描述】
研究表明,这种传染病的传播具有两种很特殊的性质; 第一是它的传播途径是树型的,一个人X只可能被某个特定的人Y感染,只要Y不得病,或者是XY之间的传播途径被切断,
则X就不会得病。 第二是,这种疾病的传播有周期性,在一个疾病传播周期之内,传染病将只会感染一代患者,而不会再传播给下一代。 这些性质大大减轻了蓬莱国疾病防控的
压力,并且他们已经得到了国内部分易感人群的潜在传播途径图(一棵树)。但是,麻烦还没有结束。由于蓬莱国疾控中心人手不够,同 时也缺乏强大的技术,以致他们在一个
疾病传播周期内,只能设法切断一条传播途径,而没有被控制的传播途径就会引起更多的易感人群被感染(也就是与当前已经被感染的人有传播途径相连,且连接途径没有被切
断的人群)。当不可能有健康人被感染时,疾病就中止传播。所以,蓬莱国疾控中心要制定出一个切断传播途径的顺序,以使尽量少的人被感染。 你的程序要针对给定的树,
找出合适的切断顺序。
【输入】
共P+1行;
第一行是两个整数n(1≤n≤300)和p。
接下来的P行接下来p行,每一行有两个整数i和j,表示节点i和j间有边相连(意即,第i人和第j人之间有传播途径相连)。其中节点1是已经被感染的患者。
【输出】
只有一行,输出总共被感染的人数。
【输入样例】
7 6
1 2
1 3
2 4
2 5
3 6
3 7
【输出样例】
3
【题目链接】:http://noi.qz5z.com/viewtask.asp?id=b304
【题意】
【题解】
直接贪心找子树最大的删掉不可行;
有反例;
如
这里如果先删掉子树大小为4的节点的话,最后答案为8-5=3即5个人不被感染,3个人被感染;
但是如果先删掉子树大小为3的节点的话,最后答案为8-6=2即6个人不被感染,2个人被感染;
显然后者更优;
这就是反例了;
所以老老实实地搜索就好;
再加一个普通的剪枝就能过;
即if (now_ganran>ans) return;
搜索策略就是枚举每一层删掉哪个节点;
这里的deep数组用得比较巧妙;
可以避免删掉那个节点之后还要往下把子树节点全都标记;
【完整代码】
#include <cstdio>
#include <algorithm>
#include <cmath>
#include <vector>
using namespace std;
#define lson l,m,rt<<1
#define rson m+1,r,rt<<1|1
#define LL long long
#define rep1(i,a,b) for (int i = a;i <= b;i++)
#define rep2(i,a,b) for (int i = a;i >= b;i--)
#define mp make_pair
#define pb push_back
#define fi first
#define se second
#define rei(x) scanf("%d",&x)
#define rel(x) scanf("%lld",&x)
typedef pair<int, int> pii;
typedef pair<LL, LL> pll;
const int dx[9] = { 0,1,-1,0,0,-1,-1,1,1 };
const int dy[9] = { 0,0,0,-1,1,-1,1,-1,1 };
const double pi = acos(-1.0);
const int N = 300+100;
int n, p,deep[N],ganran,ans = N+100;
vector <int> g[N];
void dfs(int h)
{
if (ganran > ans)
return;
int num = 0;
rep1(i,1,n)
if (deep[i] == h)
{
int len = g[i].size();
rep1(j, 0, len - 1)
{
int y = g[i][j];
if (deep[y] != 0) continue;
num++;
deep[y] = h + 1;
}
}
if (num == 0)
{
ans = min(ans, ganran);
return;
}
ganran += num;
rep1(i,1,n)
if (deep[i] == h + 1)
{
deep[i] = -1;
ganran--;
dfs(h + 1);
ganran++;
deep[i] = h + 1;
}
ganran -= num;
rep1(i, 1, n)
if (deep[i] == h + 1)
deep[i] = 0;
}
int main()
{
//freopen("F:\rush.txt", "r", stdin);
rei(n), rei(p);
rep1(i, 1, p)
{
int x, y;
rei(x), rei(y);
g[x].pb(y), g[y].pb(x);
}
ganran = 1;
deep[1] = 1;
dfs(1);
printf("%d
", ans);
return 0;
}