zoukankan      html  css  js  c++  java
  • 【26.42%】【codeforces 745C】Hongcow Builds A Nation

    time limit per test2 seconds
    memory limit per test256 megabytes
    inputstandard input
    outputstandard output
    Hongcow is ruler of the world. As ruler of the world, he wants to make it easier for people to travel by road within their own countries.

    The world can be modeled as an undirected graph with n nodes and m edges. k of the nodes are home to the governments of the k countries that make up the world.

    There is at most one edge connecting any two nodes and no edge connects a node to itself. Furthermore, for any two nodes corresponding to governments, there is no path between those two nodes. Any graph that satisfies all of these conditions is stable.

    Hongcow wants to add as many edges as possible to the graph while keeping it stable. Determine the maximum number of edges Hongcow can add.

    Input
    The first line of input will contain three integers n, m and k (1 ≤ n ≤ 1 000, 0 ≤ m ≤ 100 000, 1 ≤ k ≤ n) — the number of vertices and edges in the graph, and the number of vertices that are homes of the government.

    The next line of input will contain k integers c1, c2, …, ck (1 ≤ ci ≤ n). These integers will be pairwise distinct and denote the nodes that are home to the governments in this world.

    The following m lines of input will contain two integers ui and vi (1 ≤ ui, vi ≤ n). This denotes an undirected edge between nodes ui and vi.

    It is guaranteed that the graph described by the input is stable.

    Output
    Output a single integer, the maximum number of edges Hongcow can add to the graph while keeping it stable.

    Examples
    input
    4 1 2
    1 3
    1 2
    output
    2
    input
    3 3 1
    2
    1 2
    1 3
    2 3
    output
    0
    Note
    For the first sample test, the graph looks like this:

    Vertices 1 and 3 are special. The optimal solution is to connect vertex 4 to vertices 1 and 2. This adds a total of 2 edges. We cannot add any more edges, since vertices 1 and 3 cannot have any path between them.
    For the second sample test, the graph looks like this:

    We cannot add any more edges to this graph. Note that we are not allowed to add self-loops, and the graph must be simple.
    【题目链接】:http://codeforces.com/contest/745/problem/C

    【题解】

    先把联通块全都搞出来;
    显然那些不是特殊的联通块全都加在一起然后和特殊联通块中点数最多的合在一起能够形成的边更多.
    则加在一起就好;
    设这个联通块里面的点的个数为n;
    则边的个数为n*(n-1)/2;
    最后用总的边数减去m就好;
    这里写图片描述
    那些没有加非特殊联通块的特殊联通块也可以加边的,不要漏了。

    【完整代码】

    #include <bits/stdc++.h>
    using namespace std;
    #define lson l,m,rt<<1
    #define rson m+1,r,rt<<1|1
    #define LL long long
    #define rep1(i,a,b) for (int i = a;i <= b;i++)
    #define rep2(i,a,b) for (int i = a;i >= b;i--)
    #define mp make_pair
    #define pb push_back
    #define fi first
    #define se second
    #define rei(x) scanf("%d",&x)
    #define rel(x) scanf("%I64d",&x)
    
    typedef pair<int,int> pii;
    typedef pair<LL,LL> pll;
    
    const int MAXN = 1e3+10;
    const int dx[9] = {0,1,-1,0,0,-1,-1,1,1};
    const int dy[9] = {0,0,0,-1,1,-1,1,-1,1};
    const double pi = acos(-1.0);
    
    int n,m,k;
    int c[MAXN],f[MAXN],num[MAXN],si[MAXN];
    
    int ff(int x)
    {
        if (f[x]!=x)
            f[x] = ff(f[x]);
        else
            return x;
        return f[x];
    }
    
    int main()
    {
        //freopen("F:\rush.txt","r",stdin);
        rei(n);rei(m);rei(k);
        rep1(i,1,n)
            f[i] = i;
        rep1(i,1,k)
            rei(c[i]);
        rep1(i,1,m)
        {
            int x,y;
            rei(x);rei(y);
            int r1 = ff(x),r2 = ff(y);
            if (r1!=r2)
                f[r1] = r2;
        }
        rep1(i,1,n)
            si[ff(i)]++;
        rep1(i,1,k)
            num[i] = si[ff(c[i])];
        int rest = n;
        rep1(i,1,k)
            rest-=num[i];
        int po = max_element(num+1,num+1+k)-num;
        num[po] += rest;
        int ans = 0;
        rep1(i,1,k)
            ans += num[i]*(num[i]-1)/2;
        cout << ans - m<<endl;
        return 0;
    }
  • 相关阅读:
    IIS笔记-Application Request Route(ARR)
    UE4笔记-UStructToJsonObjectString首字母自动转换为小写的问题及解决方法
    Electron/Nodejs开发笔记-功能问题记录及指南
    Net笔记-EF/EF Core/Dapper等ORM开发记录
    C/C++和C#混合编程笔记-DLL调用与IPC等mixed问题记录
    CImg笔记
    Net/Net Core笔记 WebAPI/MVC一些bug和处理
    Net-Net Core 3.0 gRPC 开发不完全笔记
    UE4-PixelStreaming不完全开发笔记
    UE4-开发中遇到的问题和处理方法
  • 原文地址:https://www.cnblogs.com/AWCXV/p/7626804.html
Copyright © 2011-2022 走看看