zoukankan      html  css  js  c++  java
  • hdu 1695(莫比乌斯反演)

    GCD

    Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
    Total Submission(s): 12004    Accepted Submission(s): 4531


    Problem Description
    Given 5 integers: a, b, c, d, k, you're to find x in a...b, y in c...d that GCD(x, y) = k. GCD(x, y) means the greatest common divisor of x and y. Since the number of choices may be very large, you're only required to output the total number of different number pairs.
    Please notice that, (x=5, y=7) and (x=7, y=5) are considered to be the same.

    Yoiu can assume that a = c = 1 in all test cases.
     
    Input
    The input consists of several test cases. The first line of the input is the number of the cases. There are no more than 3,000 cases.
    Each case contains five integers: a, b, c, d, k, 0 < a <= b <= 100,000, 0 < c <= d <= 100,000, 0 <= k <= 100,000, as described above.
     
    Output
    For each test case, print the number of choices. Use the format in the example.
     
    Sample Input
    2 1 3 1 5 1 1 11014 1 14409 9
     
    Sample Output
    Case 1: 9 Case 2: 736427
    Hint
    For the first sample input, all the 9 pairs of numbers are (1, 1), (1, 2), (1, 3), (1, 4), (1, 5), (2, 3), (2, 5), (3, 4), (3, 5).
     
    Source
    题意:在[a,b]里面选一个数x,[c,d]里面选一个数y 使得gcd(x,y)==k,这样的方案有多少个
    定义:
    f(d)表示gcd(x,y)==k的个数  演化就是gcd(x/k,y/k)==1的个数
    F(n)表示gcd(x/k,y/k)==n(t=1,2,3,4,5,...)

    可以通过莫比乌斯反演变化为    

    F(k)=(x/k)*(y/k)

     很明显  根据公式来看  F(d)是已知的,
     1 #include<iostream>
     2 #include<cstdio>
     3 #include<cstdlib>
     4 #include<cctype>
     5 #include<cmath>
     6 #include<cstring>
     7 #include<map>
     8 #include<set>
     9 #include<queue>
    10 #include<vector>
    11 #include<algorithm>
    12 #include<string>
    13 #define ll long long
    14 #define eps 1e-10
    15 #define LL unsigned long long
    16 using namespace std;
    17 const int INF=0x3f3f3f3f;
    18 const int N=1000000+100;
    19 const int mod=998244353;
    20 ll mu[N];
    21 void getmu(){
    22     ll flag=0;
    23     for(int i=1;i<N;i++){
    24         if(i==1)flag=1;
    25         else{
    26             flag=0;
    27         }
    28         ll t=flag-mu[i];
    29         mu[i]=t;
    30         for(int j=2*i;j<N;j=j+i){
    31             mu[j]=mu[j]+t;
    32         }
    33     }
    34 }
    35 int main(){
    36     int t;
    37     getmu();
    38     //for(int i=1;i<=10;i++)cout<<mu[i]<<" ";
    39     //cout<<endl;
    40     scanf("%d",&t);
    41     int a,b,c,d,k;
    42     int Case=1;
    43     while(t--){
    44         int flag=0;
    45         scanf("%d%d%d%d%d",&a,&b,&c,&d,&k);
    46         if(k==0){
    47             printf("Case %d: ",Case++);
    48             cout<<0<<endl;
    49             continue;
    50         }
    51         b=b/k;
    52         d=d/k;
    53         ll ans=0;
    54         int minn=min(b,d);
    55         for(int i=1;i<=minn;i++){
    56             ans=ans+mu[i]*(b/i)*(d/i);
    57         }
    58         ll ans1=0;
    59         for(int i=1;i<=minn;i++){
    60             ans1=ans1+(mu[i]*(minn/i)*(minn/i));
    61         }
    62         printf("Case %d: ",Case++);
    63         cout<<ans-ans1/2<<endl;
    64     }
    65 
    66 }
  • 相关阅读:
    rsync命令详解
    Android Studio手动下载配置Gradle的方法
    "standard,singleTop,singleTask,singleInstance"-Android启动模式
    "Activity" 总结
    Android应用开发完全退出程序的通用方法
    SVN服务器使用(一)
    使用PyInstaller打包Python程序
    py2exe把python程序转换exe
    python 下载安装setuptools及pip应用
    Python的库和资源(转)
  • 原文地址:https://www.cnblogs.com/Aa1039510121/p/7287868.html
Copyright © 2011-2022 走看看