zoukankan      html  css  js  c++  java
  • ubuntu 14.04 anaconda安装

    Python的准备工作

           Python 一个备受欢迎的点是社区支持很多,有非常多优秀的库或者模块。但是某些库之间有时候也存在依赖,所以要安装这些库也是挺繁琐的过程。但总有人忍受不了这种 繁琐,都会开发出不少自动化的工具来节省各位客官的时间。其中,Anaconda是一个非常好的安装工具。

    1. Anaconda安装

           这是一个非常齐全的python发行版本,最新的版本提供了多达195个流行的python包,包含了我们常用的numpy、scipy等等科学计算的包。有了它,妈妈再也不用担心我焦头烂额地安装一个又一个依赖包了。Anaconda在手,轻松我有!下载地址如下:http://www.continuum.io/downloads,现在的版本有python2.7版本和python3.5版本,下载好对应版本、对应系统的anaconda,它实际上是一个sh脚本文件,大约280M左右。我下载的是linux版的python 2.7版本。

    下载成功后,在终端执行(2.7版本):

    # bash Anaconda2-2.4.1-Linux-x86_64.sh

    在安装的过程中,会问你安装路径,直接回车默认就可以了

    2. 将python添加到环境变量中

    如果在安装Anaconda的过程中没有将安装路径添加到系统环境变量中,需要在安装后手工添加:

    1、在终端输入$sudo gedit /etc/profile,打开profile文件。

    2、在文件末尾添加一行:export PATH=/home/grant/anaconda2/bin:$PATH,其中,将“/home/grant/anaconda2/bin”替换为你实际的安装路径。保存。

    3. 使环境变量生效

    方法1:
    让/etc/profile文件修改后立即生效 ,可以使用如下命令:
    # .  /etc/profile
    注意: . 和 /etc/profile 有空格
    方法2:
    让/etc/profile文件修改后立即生效 ,可以使用如下命令:
    # source /etc/profile

    附:Linux中source命令的用法
    source命令:
    source命令也称为“点命令”,也就是一个点符号(.)。source命令通常用于重新执行刚修改的初始化文件,使之立即生效,而不必注销并重新登录。
    用法: 
    source filename 或 . filename

    4. scikit-learn 安装

    在终端执行命令:conda install scikit-learn
    一直 “Enter" 或 ”yes" 即可完成安装。
    真的很方便。

    5. scikit-learn 测试

    #!usr/bin/env python
    #-*- coding: utf-8 -*-
    
    import sys
    import os
    import time
    from sklearn import metrics
    import numpy as np
    import cPickle as pickle
    
    reload(sys)
    sys.setdefaultencoding('utf8')
    
    # Multinomial Naive Bayes Classifier
    def naive_bayes_classifier(train_x, train_y):
        from sklearn.naive_bayes import MultinomialNB
        model = MultinomialNB(alpha=0.01)
        model.fit(train_x, train_y)
        return model
    
    
    # KNN Classifier
    def knn_classifier(train_x, train_y):
        from sklearn.neighbors import KNeighborsClassifier
        model = KNeighborsClassifier()
        model.fit(train_x, train_y)
        return model
    
    
    # Logistic Regression Classifier
    def logistic_regression_classifier(train_x, train_y):
        from sklearn.linear_model import LogisticRegression
        model = LogisticRegression(penalty='l2')
        model.fit(train_x, train_y)
        return model
    
    
    # Random Forest Classifier
    def random_forest_classifier(train_x, train_y):
        from sklearn.ensemble import RandomForestClassifier
        model = RandomForestClassifier(n_estimators=8)
        model.fit(train_x, train_y)
        return model
    
    
    # Decision Tree Classifier
    def decision_tree_classifier(train_x, train_y):
        from sklearn import tree
        model = tree.DecisionTreeClassifier()
        model.fit(train_x, train_y)
        return model
    
    
    # GBDT(Gradient Boosting Decision Tree) Classifier
    def gradient_boosting_classifier(train_x, train_y):
        from sklearn.ensemble import GradientBoostingClassifier
        model = GradientBoostingClassifier(n_estimators=200)
        model.fit(train_x, train_y)
        return model
    
    
    # SVM Classifier
    def svm_classifier(train_x, train_y):
        from sklearn.svm import SVC
        model = SVC(kernel='rbf', probability=True)
        model.fit(train_x, train_y)
        return model
    
    # SVM Classifier using cross validation
    def svm_cross_validation(train_x, train_y):
        from sklearn.grid_search import GridSearchCV
        from sklearn.svm import SVC
        model = SVC(kernel='rbf', probability=True)
        param_grid = {'C': [1e-3, 1e-2, 1e-1, 1, 10, 100, 1000], 'gamma': [0.001, 0.0001]}
        grid_search = GridSearchCV(model, param_grid, n_jobs = 1, verbose=1)
        grid_search.fit(train_x, train_y)
        best_parameters = grid_search.best_estimator_.get_params()
        for para, val in best_parameters.items():
            print para, val
        model = SVC(kernel='rbf', C=best_parameters['C'], gamma=best_parameters['gamma'], probability=True)
        model.fit(train_x, train_y)
        return model
    
    def read_data(data_file):
        import gzip
        f = gzip.open(data_file, "rb")
        train, val, test = pickle.load(f)
        f.close()
        train_x = train[0]
        train_y = train[1]
        test_x = test[0]
        test_y = test[1]
        return train_x, train_y, test_x, test_y
        
    if __name__ == '__main__':
        data_file = "mnist.pkl.gz"
        thresh = 0.5
        model_save_file = None
        model_save = {}
        
        test_classifiers = ['NB', 'KNN', 'LR', 'RF', 'DT', 'SVM', 'GBDT']
        classifiers = {'NB':naive_bayes_classifier, 
                      'KNN':knn_classifier,
                       'LR':logistic_regression_classifier,
                       'RF':random_forest_classifier,
                       'DT':decision_tree_classifier,
                      'SVM':svm_classifier,
                    'SVMCV':svm_cross_validation,
                     'GBDT':gradient_boosting_classifier
        }
        
        print 'reading training and testing data...'
        train_x, train_y, test_x, test_y = read_data(data_file)
        num_train, num_feat = train_x.shape
        num_test, num_feat = test_x.shape
        is_binary_class = (len(np.unique(train_y)) == 2)
        print '******************** Data Info *********************'
        print '#training data: %d, #testing_data: %d, dimension: %d' % (num_train, num_test, num_feat)
        
        for classifier in test_classifiers:
            print '******************* %s ********************' % classifier
            start_time = time.time()
            model = classifiers[classifier](train_x, train_y)
            print 'training took %fs!' % (time.time() - start_time)
            predict = model.predict(test_x)
            if model_save_file != None:
                model_save[classifier] = model
            if is_binary_class:
                precision = metrics.precision_score(test_y, predict)
                recall = metrics.recall_score(test_y, predict)
                print 'precision: %.2f%%, recall: %.2f%%' % (100 * precision, 100 * recall)
            accuracy = metrics.accuracy_score(test_y, predict)
            print 'accuracy: %.2f%%' % (100 * accuracy) 
    
        if model_save_file != None:
            pickle.dump(model_save, open(model_save_file, 'wb'))
    

    测试的分类器包括:
    classifiers = {'NB':naive_bayes_classifier,
                      'KNN':knn_classifier,
                       'LR':logistic_regression_classifier,
                       'RF':random_forest_classifier,
                       'DT':decision_tree_classifier,
                      'SVM':svm_classifier,
                    'SVMCV':svm_cross_validation,
                     'GBDT':gradient_boosting_classifier
        }

    使用数据集为: 

    本次使用mnist手写体库进行实验:http://deeplearning.net/data/mnist/mnist.pkl.gz。共5万训练样本和1万测试样本。

    最终结果如下:

    感谢分享:http://blog.csdn.net/zouxy09/article/details/48903179

         http://www.cnblogs.com/hdulzt/p/7156095.html

  • 相关阅读:
    Vector3函数理解-计算两向量之间的角度
    Android报错Type Error executing aapt: Return code -1
    android中 onResume()方法什么时候执行 ??(转)
    自行实现Kinect 手势Demo踩的坑
    Kinect 2.0 默认姿势的中文意思
    C#限制float有两位小数
    Android View 从左边滑出动画 ,以及从左上,左下,右上,右下放大动画。
    注册谷歌账户时最后一步验证账户输入手机号说此电话号码无法用于进行验证,如何解决?
    Mac使用sonarqube进行代码检测
    Unable to find method 'org.gradle.api.tasks.TaskInputs.file
  • 原文地址:https://www.cnblogs.com/Allen-rg/p/7766765.html
Copyright © 2011-2022 走看看