zoukankan      html  css  js  c++  java
  • 莫比乌斯反演题目结(上)

    首先是喜闻乐见的几个入门基础题,连题面基本都是一样的,流程是预处理mu函数,得到输入数据后整除分块(如果时间复杂度需要的话),思路主要是套用下图第二个公式:

    (截图来自电科bilibili上的算法讲堂大家可以去看哦)

    洛谷2257

    题意:全部gcd(1~n,1~m)为质数的个数。

    刚开始不用管他要求的数有什么特性,就列一般式子:

    (截图来自pengym的博客题解)

    但这个题用第二条推出的式子还得变一变,就直观感受去变!d的范围?n是质数?把F(d)提出去?

    下图中T即为上图中的d,t即为n。

    式子写到这里就可以写代码了,先把mu全加上,这样写:

    1   rep(j, 1, cnt) {
    2         for (int i = 1; i * primes[j] <= n; i++) {
    3             g[primes[j] * i] += mu[i];
    4         }
    5     }

    然后整除分块是某一块乘上的(n/T)*(m/T)是不变的,所以这一块一起算,代码是这样的:

    1   rep(i, 1, n)    sum[i] = sum[i-1] + g[I];//这个是预处理
    1         ll ans = 0ll;
    2         for (int l = 1, r; l <= n; l = r + 1) {
    3             r = min(n / (n / l), m / (m / l));
    4             ans += (sum[r] - sum[l - 1]) * (n / l) * (m / l);
    5         }

    总代码(部分):

     1 void pre(int n) {
     2     mu[1] = 1;
     3     rep(i, 2, n) {
     4         if (!vis[i]) {
     5             mu[i] = -1;
     6             primes[++cnt] = i;
     7         }
     8         for (int j = 1; j <= cnt && primes[j] * i <= n; j++) {
     9             vis[primes[j] * i] = true;
    10             if (i % primes[j] == 0)    break;
    11             mu[primes[j] * i] = -mu[i];    
    12         }
    13     }
    14 
    15     rep(j, 1, cnt) {
    16         for (int i = 1; i * primes[j] <= n; i++) {
    17             g[primes[j] * i] += mu[i];
    18         }
    19     }
    20     rep(i, 1, n)    sum[i] = sum[i-1] + g[i];
    21 }
    22 
    23 int main() {
    24     pre(maxn);
    25     for (T = ri; T; T--) {
    26         n = ri, m = ri;
    27         if (n > m)    swap(n, m);
    28 
    29         ll ans = 0ll;
    30         for (int l = 1, r; l <= n; l = r + 1) {
    31             r = min(n / (n / l), m / (m / l));
    32             ans += (sum[r] - sum[l - 1]) * (n / l) * (m / l);
    33         }
    34         printf("%lld
    ", ans);
    35     }
    36     return 0;
    37 }

    HDU1695

    (复习一下式子)

    题意:gcd(1~b,1~d)== k的个数。

    跟上一题很像,甚至这道题根本不用整除分块,也不用进一步推式子……就是求f(k),直接拿第二个式子扫一遍加和就行了。另外去个重,本题(x,y)和(y,x)算一种。

     1 void pre(int n) {
     2     mu[1] = 1;
     3     rep(i, 2, n) {
     4         if (!vis[i]) {
     5             primes[++cnt] = i;
     6             mu[i] = -1;
     7         }
     8         for (int j = 1; j <= cnt && primes[j] * i <= n; j++) {
     9             vis[primes[j] * i] = true;
    10             if (i % primes[j] == 0)    break;
    11             mu[primes[j] * i] = -mu[i];
    12         }
    13     }
    14 }
    15 
    16 ll cal(int b, int d) {
    17     ll ret = 0ll;
    18     for (int i = 1; i * k <= b; i++) {
    19         int t = i * k;
    20         ret += (ll)mu[i] * (b / t) * (d / t);
    21     }
    22     return ret;
    23 }
    24 
    25 int main() {
    26     pre(maxn - 5);
    27     for (int T = ri, i = 1; i <= T; i++) {
    28         a = ri, b = ri, c = ri, d = ri, k = ri;
    29         if (b > d)    swap(b, d);
    30         printf("Case %d: %lld
    ", i, k ? cal(b, d) - cal(b, b) / 2 : 0);
    31     }
    32     return 0;
    33 }

    BZOJ1101

    n次询问gcd(1~a, 1~b) == d。同一道题。

     1 #pragma comment(linker, "/STACK:1024000000,1024000000")
     2 #include <cstdio>
     3 #include <cstring>
     4 #include <cstdlib>
     5 #include <cmath>
     6 #include <ctime>
     7 #include <cctype>
     8 #include <climits>
     9 #include <iostream>
    10 #include <iomanip>
    11 #include <algorithm>
    12 #include <string>
    13 #include <sstream>
    14 #include <stack>
    15 #include <queue>
    16 #include <set>
    17 #include <map>
    18 #include <vector>
    19 #include <list>
    20 #include <fstream>
    21 #include <bitset>
    22 #define init(a, b) memset(a, b, sizeof(a))
    23 #define rep(i, a, b) for (int i = a; i <= b; i++)
    24 #define irep(i, a, b) for (int i = a; i >= b; i--)
    25 using namespace std;
    26 
    27 typedef double db;
    28 typedef long long ll;
    29 typedef unsigned long long ull;
    30 typedef pair<int, int> P;
    31 const int inf = 0x3f3f3f3f;
    32 const ll INF = 1e18;
    33 
    34 template <typename T> void read(T &x) {
    35     x = 0;
    36     int s = 1, c = getchar();
    37     for (; !isdigit(c); c = getchar())
    38         if (c == '-')    s = -1;
    39     for (; isdigit(c); c = getchar())
    40         x = x * 10 + c - 48;
    41     x *= s;
    42 }
    43 
    44 template <typename T> void write(T x) {
    45     if (x < 0)    x = -x, putchar('-');
    46     if (x > 9)    write(x / 10);
    47     putchar(x % 10 + '0');
    48 }
    49 
    50 template <typename T> void writeln(T x) {
    51     write(x);
    52     puts("");
    53 }
    54 
    55 const int maxn = 5e4 + 5;
    56 int n, a, b, d;
    57 int mu[maxn], primes[maxn], tot, sum[maxn];
    58 bool vis[maxn];
    59 
    60 void pre(int n) {
    61     mu[1] = 1;
    62     rep(i, 2, n) {
    63         if (!vis[i]) {
    64             primes[++tot] = i;
    65             mu[i] = -1;
    66         }
    67         for (int j = 1; j <= tot && primes[j] * i <= n; j++) {
    68             vis[primes[j] * i] = true;
    69             if (i % primes[j] == 0)    break;
    70             mu[primes[j] * i] = - mu[i];
    71         }
    72     }
    73     rep(i, 1, n)    sum[i] = sum[i - 1] + mu[i];
    74 }
    75 
    76 ll solve(int n, int m) {
    77     if (n > m)    swap(n, m);
    78     ll ret = 0ll;
    79     for (int l = 1, r; l <= n; l = r + 1) {
    80         r = min(n / (n / l), m / (m / l));
    81         ret += (ll)(sum[r] - sum[l - 1]) * (n / l) * (m / l);
    82     }
    83     return ret;
    84 }
    85 
    86 int main() {
    87     pre(maxn - 5);
    88     for (read(n); n; n--) {
    89         read(a), read(b), read(d);
    90         writeln(solve(a / d, b / d));
    91     }
    92     return 0;
    93 }
    bzoj1101

    BZOJ2301

    跟HDU1695的区别是变成了gcd(a~b,c~d)== k的个数。

    还是那么做,但是ans容斥一下:

    1 printf("%lld
    ", cal(b, d) - cal(b, c) - cal(a, d) + cal(a, c));

    唔,实际上应该是cal(b,c-1)、cal(a-1,d)……主要是上一行代码直接操作掉了:

    1 int main() {
    2     pre(maxn - 5);
    3     for (T = ri; T; T--) {
    4         a = ri, b = ri, c = ri, d = ri, k = ri;
    5         a = (a - 1) / k, b = b / k, c = (c - 1) / k, d = d / k;
    6         printf("%lld
    ", cal(b, d) - cal(b, c) - cal(a, d) + cal(a, c));
    7     }
    8     return 0;
    9 }

    除以k有降低复杂度的功效,gcd和范围同时除以k使得问题变成求f(1)!也就是所有的mu[d]*F(d)加和,不用预处理k的倍数了。上一题也可以这么写的。

    先对照一下公式,旧书不厌百回读:

     1 void pre(int n) {
     2     mu[1] = 1;
     3     rep(i, 2, n) {
     4         if (!vis[i]) {
     5             primes[++cnt] = i;
     6             mu[i] = -1;
     7         }
     8         for (int j = 1; j <= cnt && primes[j] * i <= n; j++) {
     9             vis[primes[j] * i] = true;
    10             if (i % primes[j] == 0)    break;
    11             mu[primes[j] * i] = -mu[i];
    12         }
    13     }
    14     rep(i, 1, n)    sum[i] = sum[i - 1] + mu[i];
    15 }
    16 
    17 ll cal(int n, int m) {
    18     if (n > m)    swap(n, m);
    19     ll ans = 0;
    20 
    21     for (int l = 1, r; l <= n; l = r + 1) {
    22         r = min(n / (n / l), m / (m / l));
    23         ans += (sum[r] - sum[l - 1]) * (n / l) * (m / l);
    24     }
    25     return ans;
    26 }

    POJ3904

    题意:首先,这次范围为给定数列,不是从1~n、从1~m所有的数这种大范围了;然后抽取四个数使他们gcd为1。也就是共有多少四元组的gcd是1,还是计数~

    通过这个题可以得知套路公式中的F(n)一般是根据莫比乌斯而跟f(d)有关的一个式子,另外又会等于一个与题目相关的、直观感受的、可以直接求出的式子。

    比如本题还是使用套路公式,但是F(d)不再是(n/d)*(m/d),而是数列中d的倍数的这些数中,随便抽4个,有多少种取法:

    1 ll ans = 0ll;
    2 rep(i, 1, maxn - 5) {
    3     ans += mu[i] * C(c[i], 4);//gcd是1的莫比乌斯公式
    4 }  

    总代码:

     1 void mobi(int n) {
     2     mu[1] = 1;
     3     rep(i, 2, n) {
     4         if (!vis[i]) {
     5             primes[++cnt] = i;
     6             mu[i] = -1;
     7         }
     8         for (int j = 1; j <= cnt && primes[j] * i <= n; j++) {
     9             vis[primes[j] * i] = true;
    10             if (i % primes[j] == 0)    break;
    11             mu[primes[j] * i] = -mu[i];
    12         } 
    13     }
    14 }
    15 
    16 void get_cnt() {
    17     init(c, 0);
    18     rep(i, 1, n) {
    19         int x = a[i];
    20         for (int j = 1; j * j <= x; j++) {
    21             if (x % j == 0) {
    22                 c[j]++;
    23                 if (j * j != x)    c[x / j]++;
    24             }
    25         }
    26     }
    27 }
    28 
    29 ll C(int n, int k) {
    30     if (n < k)    return 0;
    31 
    32     ll ret = 1ll;
    33     rep(i, 1, k) {
    34         ret = ret * (n - i + 1) / i;
    35     }
    36     return ret;
    37 }
    38 
    39 int main() {
    40     ios_base::sync_with_stdio(false);
    41     cin.tie(0);
    42 
    43     mobi(maxn - 5);
    44     while (cin >> n) {
    45         rep(i, 1, n)    cin >> a[i];
    46         get_cnt();
    47 
    48         ll ans = 0ll;
    49         rep(i, 1, maxn - 5) {
    50             ans += mu[i] * C(c[i], 4);
    51         }
    52         cout << ans << endl;
    53     }
    54     return 0;
    55 }

    BZOJ2005

    做完以上几题以后此题可独立做出。还是个gcd(1~n,1~m),但这次不是个数加和而是值加和。参考代码:

     1 #pragma comment(linker, "/STACK:1024000000,1024000000")
     2 #include <cstdio>
     3 #include <cstring>
     4 #include <cstdlib>
     5 #include <cmath>
     6 #include <ctime>
     7 #include <cctype>
     8 #include <climits>
     9 #include <iostream>
    10 #include <iomanip>
    11 #include <algorithm>
    12 #include <string>
    13 #include <sstream>
    14 #include <stack>
    15 #include <queue>
    16 #include <set>
    17 #include <map>
    18 #include <vector>
    19 #include <list>
    20 #include <fstream>
    21 #include <bitset>
    22 #define init(a, b) memset(a, b, sizeof(a))
    23 #define rep(i, a, b) for (int i = a; i <= b; i++)
    24 #define irep(i, a, b) for (int i = a; i >= b; i--)
    25 using namespace std;
    26 
    27 typedef double db;
    28 typedef long long ll;
    29 typedef unsigned long long ull;
    30 typedef pair<int, int> P;
    31 const int inf = 0x3f3f3f3f;
    32 const ll INF = 1e18;
    33 
    34 template <typename T> void read(T &x) {
    35     x = 0;
    36     int s = 1, c = getchar();
    37     for (; !isdigit(c); c = getchar())
    38         if (c == '-')    s = -1;
    39     for (; isdigit(c); c = getchar())
    40         x = x * 10 + c - 48;
    41     x *= s;
    42 }
    43 
    44 template <typename T> void write(T x) {
    45     if (x < 0)    x = -x, putchar('-');
    46     if (x > 9)    write(x / 10);
    47     putchar(x % 10 + '0');
    48 }
    49 
    50 template <typename T> void writeln(T x) {
    51     write(x);
    52     puts("");
    53 }
    54 
    55 const int maxn = 1e5 + 5;
    56 int n, m;
    57 int mu[maxn], primes[maxn], tot;
    58 bool vis[maxn];
    59 ll ans;
    60 
    61 void pre(int n) {
    62     mu[1] = 1;
    63     rep(i, 2, n) {
    64         if (!vis[i]) {
    65             primes[++tot] = i;
    66             mu[i] = -1;
    67         }
    68         for (int j = 1; j <= tot && i * primes[j] <= n; j++) {
    69             vis[i * primes[j]] = true;
    70             if (i % primes[j] == 0)    break;
    71             mu[i * primes[j]] = -mu[i];
    72         }
    73     }
    74 }
    75 
    76 ll cal(int n, int m) {
    77     ll ret = 0ll;
    78     rep(i, 1, n) {
    79         ret += (ll)mu[i] * (n / i) * (m / i);
    80     }
    81     return ret;
    82 }
    83 
    84 int main() {
    85     read(n), read(m);
    86     if (n > m)    swap(n, m);
    87     pre(maxn - 5);
    88     for (int l = 1, r; l <= n; l = r + 1) {
    89         r = min(n / (n / l), m / (m / l));
    90         ans += (ll)(l + r) * (r - l + 1) / 2 * cal(n / l, m / l);
    91     }
    92     writeln(2 * ans - (ll)n * m);
    93     return 0;
    94 }

    BZOJ2154

    这个我就推不出来了Orz。这式子还蛮复杂的,推荐这个博客,证明得蛮清楚的。

    核心:

    #pragma comment(linker, "/STACK:1024000000,1024000000")
    #include <cstdio>
    #include <cstring>
    #include <cstdlib>
    #include <cmath>
    #include <ctime>
    #include <cctype>
    #include <climits>
    #include <iostream>
    #include <iomanip>
    #include <algorithm>
    #include <string>
    #include <sstream>
    #include <stack>
    #include <queue>
    #include <set>
    #include <map>
    #include <vector>
    #include <list>
    #include <fstream>
    #include <bitset>
    #define init(a, b) memset(a, b, sizeof(a))
    #define rep(i, a, b) for (int i = a; i <= b; i++)
    #define irep(i, a, b) for (int i = a; i >= b; i--)
    using namespace std;
    
    typedef double db;
    typedef long long ll;
    typedef unsigned long long ull;
    typedef pair<int, int> P;
    const int inf = 0x3f3f3f3f;
    const ll INF = 1e18;
    
    template <typename T> void read(T &x) {
        x = 0;
        int s = 1, c = getchar();
        for (; !isdigit(c); c = getchar())
            if (c == '-')    s = -1;
        for (; isdigit(c); c = getchar())
            x = x * 10 + c - 48;
        x *= s;
    }
    
    template <typename T> void write(T x) {
        if (x < 0)    x = -x, putchar('-');
        if (x > 9)    write(x / 10);
        putchar(x % 10 + '0');
    }
    
    template <typename T> void writeln(T x) {
        write(x);
        puts("");
    }
    
    const int maxn = 1e7 + 5;
    const int mod = 20101009;
    int n, m;
    ll ans;
    int mu[maxn], primes[maxn], tot;
    ll sum[maxn];
    bool vis[maxn];
    
    void pre(int n) {
        mu[1] = 1;
        rep(i, 2, n) {
            if (!vis[i]) {
                primes[++tot] = i;
                mu[i] = -1;
            }
            for (int j = 1; j <= tot && primes[j] <= n / i; j++) {
                vis[primes[j] * i] = true;
                if (i % primes[j] == 0)    break;
                mu[primes[j] * i] = -mu[i];
            }
        }
        rep(i, 1, n) {
            if (mu[i] < 0)    mu[i] = mod - 1;
            sum[i] = sum[i - 1] + (ll)i * i % mod * mu[i] % mod;
            sum[i] %= mod;
        }
    }
    
    ll S(ll x, ll y) {
        return (x * (x + 1) / 2 % mod) * (y * (y + 1) / 2 % mod) % mod;
    }
    
    ll F(int x, int y) {
        ll ret = 0ll;
        for (int l = 1, r; l <= x; l = r + 1) {
            r = min(x / (x / l), y / (y / l));
            ret += (sum[r] - sum[l - 1] + mod) % mod * S(x / l, y / l);
            ret %= mod;
        }
        return ret;
    }
    
    int main() {
        read(n), read(m);
        if (n > m)    swap(n, m);
        pre(m);
        for (int l = 1, r; l <= n; l = r + 1) {
            r = min(n / (n / l), m / (m / l));
            ans += (ll)(r - l + 1) * (l + r) / 2 % mod * F(n / l, m / l);
            ans %= mod;
        }
        writeln(ans);
        return 0;
    }

    莫比乌斯反演题目结(下)

  • 相关阅读:
    AtomQQ 随笔
    android下服务器推送实现 androidpn分析
    Pyqt Model/view框架 5.排序与过滤
    微软官方windows phone开发视频教程第二天视频(附下载地址)
    微软官方windows phone开发视频教程第一天视频(附下载地址)
    微软官方windows phone开发视频教程第三/四天视频(附下载地址)
    初见Ajax——javascript访问DOM的三种访问方式
    一个经历,实习?兼职?
    SQL分割字符串详解
    asp.net服务器控件button先执行js再执行后台的方法
  • 原文地址:https://www.cnblogs.com/AlphaWA/p/10478075.html
Copyright © 2011-2022 走看看