zoukankan      html  css  js  c++  java
  • [Functional Programming] Monad

    Before we introduce what is Monad, first let's recap what is a pointed functor:

    A pointed functor is a Functor with .of() method

    Why pointed Functor is imporant? here

    OK, now, let's continue to see some code:

    const mmo = Maybe.of(Maybe.of('nunchucks'));
    // Maybe(Maybe('nunchucks'))

    We don't really want nested Functor, it is hard for us to work with, we need to remember how deep is the nested Functor.

    To solve the problem we can have a new method, call '.join()'.

    mmo.join();
    // Maybe('nunchucks')

    What '.join()' does is just simply reduce one level Functor.

    So how does implememation of 'join()' looks like?

    Maybe.prototype.join = function join() {
      return this.isNothing() ? Maybe.of(null) : this.$value;
    };

    As you can see, we just return 'this.$value', instead of put the value into Maybe again.

    With those in mind, let's define what is Monad!

    Monads are pointed functors that can flatten

    Let's see a example, how to use join:

    // join :: Monad m => m (m a) -> m a
    const join = mma => mma.join();
    
    // firstAddressStreet :: User -> Maybe Street
    const firstAddressStreet = compose(
      join,
      map(safeProp('street')),
      join,
      map(safeHead), safeProp('addresses'),
    );
    
    firstAddressStreet({
      addresses: [{ street: { name: 'Mulburry', number: 8402 }, postcode: 'WC2N' }],
    });
    // Maybe({name: 'Mulburry', number: 8402})

    For now, each map opreation which return a nested map, return call 'join' after.

    Let's abstract this into a function called chain.

    // chain :: Monad m => (a -> m b) -> m a -> m b
    const chain = curry((f, m) => m.map(f).join());
    
    // or
    
    // chain :: Monad m => (a -> m b) -> m a -> m b
    const chain = f => compose(join, map(f));

    Now we can rewrite the previous example which .chain():

    // map/join
    const firstAddressStreet = compose(
      join,
      map(safeProp('street')),
      join,
      map(safeHead),
      safeProp('addresses'),
    );
    
    // chain
    const firstAddressStreet = compose(
      chain(safeProp('street')),
      chain(safeHead),
      safeProp('addresses'),
    );

    To get a feelings about chain, we give few more examples:

    // getJSON :: Url -> Params -> Task JSON
    getJSON('/authenticate', { username: 'stale', password: 'crackers' })
      .chain(user => getJSON('/friends', { user_id: user.id }));
    // Task([{name: 'Seimith', id: 14}, {name: 'Ric', id: 39}]);
    
    // querySelector :: Selector -> IO DOM
    querySelector('input.username')
      .chain(({ value: uname }) => querySelector('input.email')
      .chain(({ value: email }) => IO.of(`Welcome ${uname} prepare for spam at ${email}`)));
    // IO('Welcome Olivia prepare for spam at olivia@tremorcontrol.net');
    
    Maybe.of(3)
      .chain(three => Maybe.of(2).map(add(three)));
    // Maybe(5);
    
    Maybe.of(null)
      .chain(safeProp('address'))
      .chain(safeProp('street'));
    // Maybe(null);

    Theory

    The first law we'll look at is associativity, but perhaps not in the way you're used to it.

    // associativity
    compose(join, map(join)) === compose(join, join);
    

    These laws get at the nested nature of monads so associativity focuses on joining the inner or outer types first to achieve the same result. A picture might be more instructive:

    monad associativity law

    The second law is similar:

    // identity for all (M a)
    compose(join, of) === compose(join, map(of)) === id;
    

    It states that, for any monad Mof and join amounts to id. We can also map(of) and attack it from the inside out. We call this "triangle identity" because it makes such a shape when visualized:

    monad identity law

    Now, I've seen these laws, identity and associativity, somewhere before... Hold on, I'm thinking...Yes of course! They are the laws for a category. But that would mean we need a composition function to complete the definition. Behold:

    const mcompose = (f, g) => compose(chain(f), g);
    
    // left identity
    mcompose(M, f) === f;
    
    // right identity
    mcompose(f, M) === f;
    
    // associativity
    mcompose(mcompose(f, g), h) === mcompose(f, mcompose(g, h));

    They are the category laws after all. Monads form a category called the "Kleisli category" where all objects are monads and morphisms are chained functions. I don't mean to taunt you with bits and bobs of category theory without much explanation of how the jigsaw fits together. The intention is to scratch the surface enough to show the relevance and spark some interest while focusing on the practical properties we can use each day.

    More detail

  • 相关阅读:
    RHEL7全新初始化进程管理systemd(图形启动和非图形启动切换)
    Linux系统添加硬盘设备(磁盘分区-格式化-挂载-使用)
    linux系统主要常见目录结构
    Linux系统文件访问控制列表
    Linux命令-sudo
    Linux系统文件的隐藏属性
    Linux系统文件权限&目录权限
    Linux系统VIM编辑器
    Linux功能-环境变量
    Linux系统PATH变量配置
  • 原文地址:https://www.cnblogs.com/Answer1215/p/10427945.html
Copyright © 2011-2022 走看看