zoukankan      html  css  js  c++  java
  • HDU 6029 Graph Theory【水题】

    Graph Theory

    Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 131072/131072 K (Java/Others)
    Total Submission(s): 448    Accepted Submission(s): 216


    Problem Description
    Little Q loves playing with different kinds of graphs very much. One day he thought about an interesting category of graphs called ``Cool Graph'', which are generated in the following way:
    Let the set of vertices be {1, 2, 3, ..., n}. You have to consider every vertice from left to right (i.e. from vertice 2 to n). At vertice i, you must make one of the following two decisions:
    (1) Add edges between this vertex and all the previous vertices (i.e. from vertex 1 to i1).
    (2) Not add any edge between this vertex and any of the previous vertices.
    In the mathematical discipline of graph theory, a matching in a graph is a set of edges without common vertices. A perfect matching is a matching that each vertice is covered by an edge in the set.
    Now Little Q is interested in checking whether a ''Cool Graph'' has perfect matching. Please write a program to help him.
     

    Input
    The first line of the input contains an integer T(1T50), denoting the number of test cases.
    In each test case, there is an integer n(2n100000) in the first line, denoting the number of vertices of the graph.
    The following line contains n1 integers a2,a3,...,an(1ai2), denoting the decision on each vertice.
     

    Output
    For each test case, output a string in the first line. If the graph has perfect matching, output ''Yes'', otherwise output ''No''.
     

    Sample Input
    3 2 1 2 2 4 1 1 2
     

    Sample Output
    Yes No No
     

    Source

    问题

    有n个点,1表示当前点与之前所有点连一条边,2表示不动,问通过选出其中的某些边,能否使所有的点都能够有一个点与其配对。

    思路:
    用cnt表示前面有多少个未配对的点,
    如果前面有未配对的点则,若操作为1,,则cnt--,若操作为2则cnt++
    如果前面所有的点都匹对成功则,若操作为1,,则cnt=1(因为前面没有点与其配对),若操作为2则cnt++

    #include<iostream>
    #include<algorithm>
    #include<cmath>
    #include<cstdio>
    #include<cstdlib>
    #include<queue>
    #include<map>
    #include<set>
    #include<stack>
    #include<bitset>
    #include<numeric>
    #include<vector>
    #include<string>
    #include<iterator>
    #include<cstring>
    #include<ctime>
    #include<functional>
    #define INF 0x3f3f3f3f
    #define ms(a,b) memset(a,b,sizeof(a))
    #define pi 3.14159265358979
    #define mod 1000000007
    #define lson l,m,rt<<1
    #define rson m+1,r,rt<<1|1
    using namespace std;
    
    typedef pair<int, int> P;
    typedef long long ll;
    typedef unsigned long long ull;
    const int maxn = 100010;
    
    int n, a[maxn];
    
    int main()
    {
    	int t;
    	scanf("%d", &t);
    	while (t--)
    	{
    		int cnt = 1;
    		scanf("%d", &n);
    		for (int i = 2; i <= n; i++)
    		{
    			scanf("%d", a + i);
    		}
    		if (n % 2 != 0) puts("No");
    		else
    		{
    			for (int i = 2; i <= n; i++)
    			{
    				if (a[i] == 1)
    				{
    					if (cnt == 0) cnt = 1;
    					else cnt--;
    				}
    				else cnt++;
    			}
    			if (cnt > 0) puts("No");
    			else puts("Yes");
    		}
    	}
    }



    Fighting~
  • 相关阅读:
    Failed to load resource: the server responded with a status of 404 (Not Found) favicon.ico文件找不到
    合并排序
    python爬虫入门笔记--爬取垃圾分类查询【还有待改善】
    快速排序、合并排序和分治策略的基本思想
    动态规划的基本要素
    【转载】算法时间复杂度分析方法
    python爬虫入门笔记--知乎发现(爬取失败了)
    管理主界面的两个刷新操作
    把Excel选手名单信息导入到评委计分软件Access数据库的步骤
    评委打分回避功能的详细操作步骤
  • 原文地址:https://www.cnblogs.com/Archger/p/12774771.html
Copyright © 2011-2022 走看看