zoukankan      html  css  js  c++  java
  • 刷题总结——Aeroplane chess(hdu4405)

    题目:

    Problem Description

    Hzz loves aeroplane chess very much. The chess map contains N+1 grids labeled from 0 to N. Hzz starts at grid 0. For each step he throws a dice(a dice have six faces with equal probability to face up and the numbers on the faces are 1,2,3,4,5,6). When Hzz is at grid i and the dice number is x, he will moves to grid i+x. Hzz finishes the game when i+x is equal to or greater than N.

    There are also M flight lines on the chess map. The i-th flight line can help Hzz fly from grid Xi to Yi (0<Xi<Yi<=N) without throwing the dice. If there is another flight line from Yi, Hzz can take the flight line continuously. It is granted that there is no two or more flight lines start from the same grid.

    Please help Hzz calculate the expected dice throwing times to finish the game.

    Input

    There are multiple test cases. 
    Each test case contains several lines.
    The first line contains two integers N(1≤N≤100000) and M(0≤M≤1000).
    Then M lines follow, each line contains two integers Xi,Yi(1≤Xi<Yi≤N).  
    The input end with N=0, M=0. 

    Output

    For each test case in the input, you should output a line indicating the expected dice throwing times. Output should be rounded to 4 digits after decimal point.

    Sample Input

    2 0 8 3 2 4 4 5 7 8 0 0

    Sample Output

    1.1667 2.3441

    题解:

      期望dpsb题···不多说了

    代码:

    #include<iostream>
    #include<cstdio>
    #include<cstdlib>
    #include<ctime>
    #include<cctype>
    #include<string>
    #include<cstring>
    #include<algorithm>
    using namespace std;
    const int N=1e5+5;
    double f[N];
    int n,m,to[N];
    inline int R(){
        char c;int f=0;
        for(c=getchar();c<'0'||c>'9';c=getchar());
        for(;c<='9'&&c>='0';c=getchar())    f=(f<<3)+(f<<1)+c-'0';
        return f;
    }
    int main(){
        //freopen("a.in","r",stdin);
        while(scanf("%d%d",&n,&m)){
            if(n==0&&m==0)    break;
            memset(to,0,sizeof(to));memset(f,0,sizeof(f));int a,b;
            for(int i=1;i<=m;i++)    a=R(),b=R(),to[a]=b;
            for(int i=n-1;i>=0;i--){
                if(to[i]){
                    f[i]=f[to[i]];continue;
                }
                for(int j=1;j<=6;j++)
                    f[i]+=(f[i+j]+1)/6;
            }
            printf("%0.4f
    ",f[0]);
        }
        return 0;
    }
  • 相关阅读:
    洛谷 P3128 [ USACO15DEC ] 最大流Max Flow —— 树上差分
    洛谷 P3953 [ NOIP 2017 ] 逛公园 —— 最短路DP
    bzoj 3231 [ Sdoi 2008 ] 递归数列 —— 矩阵乘法
    bzoj 1024 [ SCOI 2009 ] 生日快乐 —— 递归
    hdu 5823 color II —— 子集DP
    bzoj 1093 [ ZJOI 2007 ] 最大半连通子图 —— 拓扑+DP
    洛谷 P3959 NOIP2017 宝藏 —— 状压搜索
    最短路(模板
    线段树 扫描线
    Dijkstra算法
  • 原文地址:https://www.cnblogs.com/AseanA/p/7768665.html
Copyright © 2011-2022 走看看