zoukankan      html  css  js  c++  java
  • 【Lintcode】018.Subsets II

    题目:

    Given a list of numbers that may has duplicate numbers, return all possible subsets

    Notice

    • Each element in a subset must be in non-descending order.
    • The ordering between two subsets is free.
    • The solution set must not contain duplicate subsets.

    Example

    If S = [1,2,2], a solution is:

    [
      [2],
      [1],
      [1,2,2],
      [2,2],
      [1,2],
      []
    ]

    题解:

    Solution 1 ()

    class Solution {
    public:
        vector<vector<int> > subsetsWithDup(vector<int> S) {
            vector<vector<int> > res;
            vector<int> v;
            sort(S.begin(), S.end());
            Dfs(S, res, v, 0);
            
            return res;
        }
        
        void Dfs(vector<int> S, vector<vector<int> > &res, vector<int> &v, int pos) {
            res.push_back(v);
            
            for (int i = pos; i < S.size(); ++i) {
                if (i == pos || S[i] != S[i - 1]) {
                    v.push_back(S[i]);
                    Dfs(S, res, v, i + 1);
                    v.pop_back();
                }
            }
        }
    };

      To solve this problem, it is helpful to first think how many subsets are there. If there is no duplicate element, the answer is simply 2^n, where n is the number of elements. This is because you have two choices for each element, either putting it into the subset or not. So all subsets for this no-duplicate set can be easily constructed:

    num of subset

    • (1 to 2^0) empty set is the first subset
    • (2^0+1 to 2^1) add the first element into subset from (1)
    • (2^1+1 to 2^2) add the second element into subset (1 to 2^1)
    • (2^2+1 to 2^3) add the third element into subset (1 to 2^2)
    • ....
    • (2^(n-1)+1 to 2^n) add the nth element into subset(1 to 2^(n-1))

    Then how many subsets are there if there are duplicate elements? We can treat duplicate element as a spacial element. For example, if we have duplicate elements (5, 5), instead of treating them as two elements that are duplicate, we can treat it as one special element 5, but this element has more than two choices: you can either NOT put it into the subset, or put ONE 5 into the subset, or put TWO 5s into the subset. Therefore, we are given an array (a1, a2, a3, ..., an) with each of them appearing (k1, k2, k3, ..., kn) times, the number of subset is (k1+1)(k2+1)...(kn+1). We can easily see how to write down all the subsets similar to the approach above.

    Solution 2 ()

    class Solution {
    public:
        vector<vector<int> > subsetsWithDup(vector<int> &S) {
            vector<vector<int> > res{{}};
            sort(S.begin(), S.end());
            for (int i = 0; i < S.size(); ) {
                int cnt = 0;
                while (cnt + i < S.size() && S[cnt + i] == S[i]) {
                    ++cnt;
                }
                int size = res.size();
                for (int j = 0; j < size; ++j) {
                    vector<int> instance = res[j];
                    for (int k = 0; k < cnt; ++k) {
                        instance.push_back(S[i]);
                        res.push_back(instance);
                    }
                }
                i += cnt;
            }
            return res;
        }
    };

    Solution 3 ()

    class Solution {
    public:
        vector<vector<int> > subsetsWithDup(vector<int> &S) {
            vector<vector<int> > res{{}};
            sort(S.begin(), S.end());
            int size = 1;
            int last = !S.empty() ? S[0] : 0;
               for (int i = 0; i < S.size(); ++i) {
                   if (last != S[i]) {
                       last = S[i];
                       size = res.size();
                   }
                   int newsize = res.size();
                   for (int j = newsize - size; j < newsize; ++j) {
                       res.push_back(res[j]);
                       res.back().push_back(S[i]);
                   }
               }
            return res;
        }
    };
  • 相关阅读:
    hdu 母牛的故事 递推题
    并查集
    又是矩阵 Uva上的一道 经典题目
    poj 3233 矩阵幂取模
    electronvue + elementui构建桌面应用
    主板cmos 映射表
    高级配置与电源接口 acpi 简介
    警告不能读取 AppletViewer 属性文件的解决方法
    高级 Synth(转载)
    vbs 查看硬件信息代码
  • 原文地址:https://www.cnblogs.com/Atanisi/p/6866474.html
Copyright © 2011-2022 走看看