zoukankan      html  css  js  c++  java
  • 【Lintcode】018.Subsets II

    题目:

    Given a list of numbers that may has duplicate numbers, return all possible subsets

    Notice

    • Each element in a subset must be in non-descending order.
    • The ordering between two subsets is free.
    • The solution set must not contain duplicate subsets.

    Example

    If S = [1,2,2], a solution is:

    [
      [2],
      [1],
      [1,2,2],
      [2,2],
      [1,2],
      []
    ]

    题解:

    Solution 1 ()

    class Solution {
    public:
        vector<vector<int> > subsetsWithDup(vector<int> S) {
            vector<vector<int> > res;
            vector<int> v;
            sort(S.begin(), S.end());
            Dfs(S, res, v, 0);
            
            return res;
        }
        
        void Dfs(vector<int> S, vector<vector<int> > &res, vector<int> &v, int pos) {
            res.push_back(v);
            
            for (int i = pos; i < S.size(); ++i) {
                if (i == pos || S[i] != S[i - 1]) {
                    v.push_back(S[i]);
                    Dfs(S, res, v, i + 1);
                    v.pop_back();
                }
            }
        }
    };

      To solve this problem, it is helpful to first think how many subsets are there. If there is no duplicate element, the answer is simply 2^n, where n is the number of elements. This is because you have two choices for each element, either putting it into the subset or not. So all subsets for this no-duplicate set can be easily constructed:

    num of subset

    • (1 to 2^0) empty set is the first subset
    • (2^0+1 to 2^1) add the first element into subset from (1)
    • (2^1+1 to 2^2) add the second element into subset (1 to 2^1)
    • (2^2+1 to 2^3) add the third element into subset (1 to 2^2)
    • ....
    • (2^(n-1)+1 to 2^n) add the nth element into subset(1 to 2^(n-1))

    Then how many subsets are there if there are duplicate elements? We can treat duplicate element as a spacial element. For example, if we have duplicate elements (5, 5), instead of treating them as two elements that are duplicate, we can treat it as one special element 5, but this element has more than two choices: you can either NOT put it into the subset, or put ONE 5 into the subset, or put TWO 5s into the subset. Therefore, we are given an array (a1, a2, a3, ..., an) with each of them appearing (k1, k2, k3, ..., kn) times, the number of subset is (k1+1)(k2+1)...(kn+1). We can easily see how to write down all the subsets similar to the approach above.

    Solution 2 ()

    class Solution {
    public:
        vector<vector<int> > subsetsWithDup(vector<int> &S) {
            vector<vector<int> > res{{}};
            sort(S.begin(), S.end());
            for (int i = 0; i < S.size(); ) {
                int cnt = 0;
                while (cnt + i < S.size() && S[cnt + i] == S[i]) {
                    ++cnt;
                }
                int size = res.size();
                for (int j = 0; j < size; ++j) {
                    vector<int> instance = res[j];
                    for (int k = 0; k < cnt; ++k) {
                        instance.push_back(S[i]);
                        res.push_back(instance);
                    }
                }
                i += cnt;
            }
            return res;
        }
    };

    Solution 3 ()

    class Solution {
    public:
        vector<vector<int> > subsetsWithDup(vector<int> &S) {
            vector<vector<int> > res{{}};
            sort(S.begin(), S.end());
            int size = 1;
            int last = !S.empty() ? S[0] : 0;
               for (int i = 0; i < S.size(); ++i) {
                   if (last != S[i]) {
                       last = S[i];
                       size = res.size();
                   }
                   int newsize = res.size();
                   for (int j = newsize - size; j < newsize; ++j) {
                       res.push_back(res[j]);
                       res.back().push_back(S[i]);
                   }
               }
            return res;
        }
    };
  • 相关阅读:
    Jmeter中的变量(三)
    Jmeter组件和属性(二)
    Jmeter配置元件执行顺序
    Fiddler Web Session 列表(1)
    selenium webdriver操作各浏览器
    java1.8环境配置+win10系统
    python函数库及函数标准库
    MySql 数据库基础命令
    Linux 常用命令
    normalize.css
  • 原文地址:https://www.cnblogs.com/Atanisi/p/6866474.html
Copyright © 2011-2022 走看看