zoukankan      html  css  js  c++  java
  • hdu 3374

    Problem Description
    Give you a string with length N, you can generate N strings by left shifts. For example let consider the string “SKYLONG”, we can generate seven strings:
    String Rank 
    SKYLONG 1
    KYLONGS 2
    YLONGSK 3
    LONGSKY 4
    ONGSKYL 5
    NGSKYLO 6
    GSKYLON 7
    and lexicographically first of them is GSKYLON, lexicographically last is YLONGSK, both of them appear only once.
      Your task is easy, calculate the lexicographically fisrt string’s Rank (if there are multiple answers, choose the smallest one), its times, lexicographically last string’s Rank (if there are multiple answers, choose the smallest one), and its times also.
     
    Input
      Each line contains one line the string S with length N (N <= 1000000) formed by lower case letters.
     
    Output
    Output four integers separated by one space, lexicographically fisrt string’s Rank (if there are multiple answers, choose the smallest one), the string’s times in the N generated strings, lexicographically last string’s Rank (if there are multiple answers, choose the smallest one), and its times also.
     
    Sample Input
    abcder aaaaaa ababab
     
    Sample Output
    1 1 6 1 1 6 1 6 1 3 2 3
     
    Author
    WhereIsHeroFrom
     
    Source

     利用nxt数组很好推出循环次数,重点是最小最大表示法。

     1 #include <iostream>
     2 #include <cstdlib>
     3 #include <cstring>
     4 #include <cstdio>
     5 const int N = 1000000 + 11;
     6 using namespace std;
     7 char ss[N],s[N<<1];
     8 int cs,n,a[N<<1],nxt[N];
     9 
    10 void pre()
    11 {
    12     nxt[1] = 0; int k = 0;
    13     for(int i = 2; i <= n; ++i)
    14     {
    15         while(k > 0 && a[i] != a[k+1]) k = nxt[k];
    16         if(a[i] == a[k+1]) ++k;
    17         nxt[i] = k;
    18     }
    19 }
    20 
    21 void Init()
    22 {
    23     n = strlen(ss);
    24     strcpy(s,ss);
    25     strcat(s,ss);
    26     for(int i = 0; i < ( n << 1 ); ++i) a[i+1] = s[i]; 
    27     pre();
    28 }
    29 
    30 int minx()
    31 {
    32     
    33     int i = 1,j = 2,k = 0;
    34     while(i <= n && j <= n  && k < n)
    35     {
    36         if(a[i+k] == a[j+k] ) ++k;
    37         else if(a[i+k] < a[j+k]) j = j + k + 1, k = 0;
    38         else i = i + k + 1, k = 0;
    39         if( i == j ) ++j;
    40     }
    41     return i;
    42 }
    43  
    44 void Solve()
    45 {
    46     cs = n - nxt[n]; 
    47     if(n % cs == 0) cs = n/cs; else cs = 1; n = n/cs;
    48     printf("%d %d ",minx(),cs);
    49     for(int i = 1;i <= ( n << 1 ); ++i) a[i] = 0-a[i];
    50     printf("%d %d",minx(),cs);
    51 }
    52 
    53 
    54 int main()
    55 {
    56     while(~scanf("%s",ss))
    57     {
    58         Init();
    59         Solve();
    60         puts("");
    61     }
    62     return 0;
    63 }
  • 相关阅读:
    致虚极守静笃
    DNS 透明代理
    Java“禁止”泛型数组
    Java和C#语法对比
    JVM 内存区域 (运行时数据区域)
    Java8 使用
    G1收集器的收集原理
    BZOJ 2222: [Cqoi2006]猜数游戏【神奇的做法,傻逼题,猜结论】
    数据结构之网络流入门(Network Flow)简单小节
    BZOJ 1257: [CQOI2007]余数之和sum【神奇的做法,思维题】
  • 原文地址:https://www.cnblogs.com/Ateisti/p/6640977.html
Copyright © 2011-2022 走看看