zoukankan      html  css  js  c++  java
  • HDU-3506 二维四边形不等式

    Monkey Party

    Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 131072/65536 K (Java/Others)
    Total Submission(s): 2665    Accepted Submission(s): 1074


    Problem Description
    Far away from our world, there is a banana forest. And many lovely monkeys live there. One day, SDH(Song Da Hou), who is the king of banana forest, decides to hold a big party to celebrate Crazy Bananas Day. But the little monkeys don't know each other, so as the king, SDH must do something. 
    Now there are n monkeys sitting in a circle, and each monkey has a making friends time. Also, each monkey has two neighbor. SDH wants to introduce them to each other, and the rules are: 
    1.every time, he can only introduce one monkey and one of this monkey's neighbor. 
    2.if he introduce A and B, then every monkey A already knows will know every monkey B already knows, and the total time for this introducing is the sum of the making friends time of all the monkeys A and B already knows; 
    3.each little monkey knows himself; 
    In order to begin the party and eat bananas as soon as possible, SDH want to know the mininal time he needs on introducing. 
     
    Input
    There is several test cases. In each case, the first line is n(1 ≤ n ≤ 1000), which is the number of monkeys. The next line contains n positive integers(less than 1000), means the making friends time(in order, the first one and the last one are neighbors). The input is end of file.
     
    Output
    For each case, you should print a line giving the mininal time SDH needs on introducing.
     
    Sample Input
    8 5 2 4 7 6 1 3 9
     
    Sample Output
    105
     
    Author
    PerfectCai
     
    Source
     
    二维四边形不等式:
    定理一:
    如果dp[i][j] = Min(dp[i][k] + dp[k + 1][j] + w(i, j)), 若
    (1)w满足四边形不等式
    (2)对于a < b < c < d,满足w(a, d) > w(b, c)
    则dp满足四边形不等式
     
    定理二:
    若dp满足四边形不等式,设p[i][j]为dp[i][j]转移来的k
    则p[i][j - 1] <= p[i][j] <= p[i + 1][j];
     
    具体操作:
    在转移时只需讲k由p[i][j - 1]枚举至p[i + 1][j]即可。可以证明,时间复杂度n2.
    感觉比一维四边形不等式好写的多...
     1 #include <iostream>
     2 #include <fstream>
     3 #include <sstream>
     4 #include <cstdlib>
     5 #include <cstdio>
     6 #include <cmath>
     7 #include <string>
     8 #include <cstring>
     9 #include <algorithm>
    10 #include <queue>
    11 #include <stack>
    12 #include <vector>
    13 #include <set>
    14 #include <map>
    15 #include <list>
    16 #include <iomanip>
    17 #include <cctype>
    18 #include <cassert>
    19 #include <bitset>
    20 #include <ctime>
    21 
    22 using namespace std;
    23 
    24 #define pau system("pause")
    25 #define ll long long
    26 #define pii pair<int, int>
    27 #define pb push_back
    28 #define mp make_pair
    29 #define mp make_pair
    30 #define pli pair<ll, int>
    31 #define clr(a, x) memset(a, x, sizeof(a)
    32 
    33 const double pi = acos(-1.0);
    34 const int INF = 0x3f3f3f3f;
    35 const int MOD = 1e9 + 7;
    36 const double EPS = 1e-9;
    37 
    38 /*
    39 #include <ext/pb_ds/assoc_container.hpp>
    40 #include <ext/pb_ds/tree_policy.hpp>
    41 using namespace __gnu_pbds;
    42 #define TREE tree<pli, null_type, greater<pli>, rb_tree_tag, tree_order_statistics_node_update>
    43 TREE T;
    44 */
    45 
    46 int n, a[2015], dp[2015][2015], p[2015][2015], sum[2015];
    47 int main() {
    48     while (~scanf("%d", &n)) {
    49         for (int i = 1; i <= n; ++i) {
    50             scanf("%d", &a[i]);
    51             a[i + n] = a[i];
    52         }
    53         for (int i = 1; i <= n << 1; ++i) {
    54                 sum[i] = sum[i - 1] + a[i];
    55         }
    56         for (int i = 1; i <= n << 1; ++i) {
    57                 p[i][i] = i;
    58                 dp[i][i] = 0;
    59         }
    60         for (int l = 2; l <= n; ++l) {
    61                 for (int i = 1; i <= 2 * n - l + 1; ++i) {
    62                         int j = i + l - 1;
    63                         dp[i][j] = INF;
    64                         for (int k = p[i][j - 1]; k <= p[i + 1][j]; ++k) {
    65                                 if (dp[i][k] + dp[k + 1][j] < dp[i][j]) {
    66                                         dp[i][j] = dp[i][k] + dp[k + 1][j];
    67                                         p[i][j] = k;
    68                                 }
    69                         }
    70                         dp[i][j] += sum[j] - sum[i - 1];
    71                 }
    72         }
    73         int ans = INF;
    74         for (int i = 1; i <= n; ++i) {
    75                 ans = min(ans, dp[i][i + n - 1]);
    76         }
    77         printf("%d
    ", ans);
    78     }
    79     return 0;
    80 }
    View Code
  • 相关阅读:
    Sublimit 3 注册码
    Flink sql 之 两阶段聚合与 TwoStageOptimizedAggregateRule(源码分析)
    IDM使用教程:利用IDM下载百度网盘文件
    Python调用Prometheus监控数据并计算
    Windows搭建Nginx+PHP+MySQL环境(图文详解)
    PHPstorm+XDebug+Chrome/Firefox超详细教程(图文)
    C# 教你怎么解决DateTime转unix时间戳出现的误差
    asp.net win IIS下cookie读取不区分大小写如何处理
    SQL 空格分隔的多个关键词模糊查询货品资料任一匹配和全部匹配 数据库实现方式
    TDBGrideh表头自动排序设置
  • 原文地址:https://www.cnblogs.com/BIGTOM/p/9694562.html
Copyright © 2011-2022 走看看