假如F[1] = a, F[2] = B, F[n] = F[n - 1] + F[n - 2]。
写成矩阵表示形式可以很快发现F[n] = f[n - 1] * b + f[n - 2] * a。 f[n] 是斐波那契数列
也就是我们如果知道一段区间的前两个数增加了多少,可以很快计算出这段区间的第k个数增加了多少
通过简单的公式叠加也能求和
F[n] = f[n - 1] * b + f[n - 2] * a
F[n - 1] = f[n - 2] * b + f[n - 3] * a
.....
F[3] = f[2] * b + f[1] * a
F[2] = 1 * b + 0
F[1] = 0 + a
令G[n] = 0 + 1 + f[2] + f[3] + .... + f[n - 1]
K[n] = 1 + 0 + f[1] + f[2] + .... f[n - 2] ,那么F[n] = G[n] * b + K[n] * a
线段树结点维护a,b两个延迟标记,分别表示第一个数和第二个数增加了多少
注意在PushDown和update的时候还要通过F[n] = f[n - 1] * b + f[n - 2] * a计算出右子节点的前两个数应该增加的值
#include <cstdio>
#include <algorithm>
#include <cstring>
#include <iostream>
using namespace std;
typedef long long LL;
const int maxn = 3e5 + 10;
const int mod = 1e9 + 9;
#define lson idx << 1, l, mid
#define rson idx << 1 | 1, mid + 1, r
LL f[maxn], F[maxn], G[maxn];
void init() {
f[1] = G[1] = 1;
F[0] = 1;
F[1] = 1;
for(int i = 2; i < maxn; i++) {
f[i] = (f[i - 1] + f[i - 2]) % mod;
G[i] = (G[i - 1] + f[i]) % mod;
F[i] = (F[i - 1] + f[i - 1]) % mod;
}
// F[i] = 1 + 0 + f[1] + f[2] + f[3] + ....f[i - 1]
// G[i] = 0 + f[1] + f[2] + f[3] + ....f[i]
}
LL sum[maxn << 2];
LL a[maxn << 2], b[maxn << 2];
void PushUp(int idx) {
sum[idx] = (sum[idx << 1] + sum[idx << 1 | 1]) % mod;
}
void build(int idx, int l, int r) {
a[idx] = b[idx] = 0;
if(l == r) {
scanf("%I64d", &sum[idx]);
} else {
int mid = (r + l) >> 1;
build(lson);
build(rson);
PushUp(idx);
}
}
void maintain(int idx, int l,int r, int v1, int v2) {
int len = r - l + 1;
a[idx] = (a[idx] + v1) % mod;
b[idx] = (b[idx] + v2) % mod;
sum[idx] = (sum[idx] + G[len - 1] * v2 % mod + F[len - 1] * v1 % mod) % mod;
}
void PushDown(int idx, int l, int r) {
if(a[idx] != 0 || b[idx] != 0) {
int mid = (r + l) >> 1;
maintain(lson, a[idx], b[idx]);
int len = mid - l + 1;
int v1 = (f[len] * b[idx] + f[len - 1] * a[idx]) % mod;
int v2 = (f[len + 1] * b[idx] + f[len] * a[idx]) % mod;
maintain(rson, v1, v2);
a[idx] = b[idx] = 0;
}
}
void update(int idx, int l, int r, int tl, int tr, int v1, int v2) {
if(tl <= l && tr >= r) {
maintain(idx, l, r, v1, v2);
} else {
PushDown(idx, l, r);
int mid = (r + l) >> 1;
if(tl <= mid) update(lson, tl, tr, v1, v2);
if(tr > mid) {
LL h1 = v1, h2 = v2;
if(tl <= mid) {
int len = mid - max(tl,l) + 1;
h1 = (f[len] * v2 + f[len - 1] * v1) % mod;
h2 = (f[len + 1] * v2 + f[len] * v1) % mod;
}
update(rson, tl, tr, h1, h2);
}
PushUp(idx);
}
}
LL query(int idx, int l, int r, int tl, int tr) {
if(tl <= l && tr >= r) return sum[idx];
else {
PushDown(idx, l, r);
int mid = (r + l) >> 1;
LL ans = 0;
if(tl <= mid) ans = (ans + query(lson, tl, tr)) % mod;
if(tr > mid) ans = (ans + query(rson, tl, tr)) % mod;
return ans;
}
}
int main() {
init();
int n, m;
scanf("%d%d", &n, &m);
build(1, 1, n);
for(int i = 1; i <= m; i++) {
int op, l, r;
scanf("%d%d%d", &op, &l, &r);
if(op == 1) update(1, 1, n, l, r, 1, 1);
else {
LL ans = query(1, 1, n, l, r);
printf("%I64d
", ans);
}
}
return 0;
}