前段时间我参加华为比赛学习的线性规划
虽然现在看来没有卵用
将模板贴一下
#include<cmath>
#include<map>
#include<iostream>
#include<cstring>
#include<cstdio>
#include<set>
#include<vector>
#include<algorithm>
using namespace std;
typedef long long ll;
const int MAXN = 1005;
const double INF = 1e10;
const double eps = 1e-7;
int n,m; // 行, 列
double c[MAXN]; double b[MAXN]; double a[MAXN][MAXN]; double x[MAXN*2]; double v; int N[MAXN], B[MAXN];
int ans;
int cnt = 0;
void debug(int pos , int flor) {
if(cnt < 10) {
cnt ++;
}else return ;
printf("pos = %d, flor = %d
",pos,flor);
printf("%d %d %.2f
",n,m,v);
for(int i = 1; i <= m; ++i)
printf("%.2f ", c[i]); printf("
");
for(int i = 1; i <= n; ++i) {
printf("%.2f ",b[i]);
for(int j = 1; j <= m; ++j) {
printf("%.2f ",a[i][j]);
}
printf("
");
}
for(int i = 1; i <= n; ++i) printf("%d ",B[i]); printf("
");
for(int i = 1; i <= m; ++i) printf("%d ",N[i]); printf("
");
// for(int i = 1; i <= n+m; ++i) printf("%.2f ",x[i]); printf("
");
}
int equal(double a, double b) {
double tt = fabs(b-a);
if(tt < eps) return 1;
else return 0;
}
void priov(int l, int e) { // 第l行,第e列
b[l] /= a[l][e];
for(int i = 1; i <= m; ++i) {
if(i != e) {
a[l][i] /= a[l][e];
}
}
a[l][e] = 1/a[l][e];
for(int i = 1; i <= n; ++i) {
if(i != l && fabs(a[i][e]) > eps) {
b[i] -= b[l] * a[i][e];
for(int j = 1; j <= m; ++j) {
if(j != e) {
a[i][j] -= a[i][e] * a[l][j];
}
}
a[i][e] = -a[i][e] * a[l][e];
}
}
v += c[e] * b[l];
for(int i = 1; i <= m; ++i) {
if(i != e) {
c[i] -= c[e] * a[l][i];
}
}
c[e] = -c[e] * a[l][e];
}
double simple(){
while(1) {
int l,e = 0;
for(int i = 1; i <= m; ++i) {
if(c[i] > eps) {
e = i; break;
}
}
if(!e) return v;
double minn = INF;
for(int i = 1; i <= n; ++i) {
if(a[i][e] > eps && minn > b[i]/a[i][e]) {
minn = b[i]/a[i][e]; l = i;
}
}
if(minn == INF) return minn;
priov(l, e);
swap(B[l], N[e]);
}
}
int initsimplex() { // 找到一个初始可行解
// 备份一些信息
int _m = m; double _v = v;
int _N[m+5]; int _c[m+5];
for(int i = 1; i <= m; ++i) _N[i] = N[i];
for(int i = 1; i <= m; ++i) _c[i] = c[i];
int id, minn = INF;
for(int i = 1; i <= n; ++i)
if(b[i] < minn) {
id = i; minn = b[i];
}
if(b[id] >= 0) return 1;
//最初形式不满足条件,就需要寻找一个
m ++;
v = 0;
for(int i = 1; i <= m; ++i) c[i] = 0; c[m] = -1;
for(int i = 1; i <= n; ++i) a[i][m] = -1;
N[m] = 0;
// debug(2, 1);
printf("%d %d
",id,m);
priov(id, m);
swap(B[id], N[m]);
debug(3, 1);
simple();
debug(4,1);
if( equal(v, 0) == 0) return 0;
//现将生成的新松弛型中的x0项删去
for(int i = 1; i <= n; ++i) {
if(B[i] == 0) {
int pos;
for(int j = 1; j <= m; ++j) {
if(a[i][j] != 0) {
pos = j;
}
}
priov(i, pos);
swap(B[i], N[pos]);
break;
}
}
for(int i = 1; i <= n; ++i) {
int fl = 0;
for(int j = 1; j <= m; ++j) {
if(N[j] == 0) fl = 1;
if(fl) {
a[i][j] = a[i][j+1];
}
}
}
int fl = 0;
for(int i = 1; i <= m; ++i) {
if(N[i] == 0) fl = 1;
if(fl) N[i] = N[i+1];
}
m --;
map<int, int> m1; m1.clear();
map<int, int> m2; m2.clear();
for(int i = 1; i <= n; ++i) m1[B[i]] = i;
for(int i = 1; i <= m; ++i) m2[N[i]] = i;
for(int i = 1; i <= m; ++i) c[i] = 0;
v = _v;
printf("%.3f
",v);
for(int i = 1; i <= _m; ++i) {
if(m1.count(_N[i])) {
int tt = m1[_N[i]];
for(int j = 1; j <= m; ++j) {
c[j] -= _c[i] * a[tt][j];
}
v += _c[i] * b[tt];
}else {
c[m2[_N[i]]] += _c[i];
}
}
return 1;
}
void solve(){
while(~scanf("%d %d",&n,&m)) {
ans = -1;
scanf("%lf",&v);
for(int i = 1; i <= m; ++i) scanf("%lf",&c[i]);
for(int i = 1; i <= n; ++i) {
scanf("%lf",&b[i]);
for(int j = 1; j <= m; ++j) {
scanf("%lf",&a[i][j]);
}
}
for(int i = 1; i <= m; ++i) N[i] = i;
for(int i = 1; i <= n; ++i) B[i] = i+m;
set<int> st;
// for(int i = 1; i <= m; ++i) st.insert(N[i]);
int tt = initsimplex();
for(int i = 1; i <= m; ++i) st.insert(N[i]);
if(!tt) {
printf("there is none true answer!
");
return;
}
debug(1,1);
simple();
memset(x, 0, sizeof(x));
for(int i = 1; i <= n; ++i) {
if(st.find(B[i]) != st.end()) {
x[B[i]] = b[i];
}
}
debug(1, 1);
printf("ans = %d
", ans);
}
}
int main(){
solve();
return 0;
}
/*
2 2
0
3 13
40 2 9
82 11 -8
5 2 0.00
3.00 13.00
40.00 2.00 9.00
82.00 11.00 -8.00
9.00 1.00 0.00
2.00 0.00 1.00
-9.00 -1.00 0.00
4 2 0.00
3.00 13.00
40.00 2.00 9.00
82.00 11.00 -8.00
9.00 1.00 0.00
-3.00 0.00 -1.00
*/