zoukankan      html  css  js  c++  java
  • Google Optimization Tools实现加工车间任务规划【Python版】

    上一篇介绍了《使用.NET Core与Google Optimization Tools实现加工车间任务规划》,这次将Google官方文档python实现的版本的完整源码献出来,以满足喜爱python的朋友。

    from __future__ import print_function
    
    # Import Python wrapper for or-tools constraint solver.
    from ortools.constraint_solver import pywrapcp
    
    def main():
      # Create the solver.
      solver = pywrapcp.Solver('jobshop')
    
      machines_count = 3
      jobs_count = 3
      all_machines = range(0, machines_count)
      all_jobs = range(0, jobs_count)
      # Define data.
      machines = [[0, 1, 2],
                  [0, 2, 1],
                  [1, 2]]
    
      processing_times = [[3, 2, 2],
                          [2, 1, 4],
                          [4, 3]]
      # Computes horizon.
      horizon = 0
      for i in all_jobs:
        horizon += sum(processing_times[i])
      # Creates jobs.
      all_tasks = {}
      for i in all_jobs:
        for j in range(0, len(machines[i])):
          all_tasks[(i, j)] = solver.FixedDurationIntervalVar(0,
                                                              horizon,
                                                              processing_times[i][j],
                                                              False,
                                                              'Job_%i_%i' % (i, j))
    
      # Creates sequence variables and add disjunctive constraints.
      all_sequences = []
      all_machines_jobs = []
      for i in all_machines:
    
        machines_jobs = []
        for j in all_jobs:
          for k in range(0, len(machines[j])):
            if machines[j][k] == i:
              machines_jobs.append(all_tasks[(j, k)])
        disj = solver.DisjunctiveConstraint(machines_jobs, 'machine %i' % i)
        all_sequences.append(disj.SequenceVar())
        solver.Add(disj)
    
      # Add conjunctive contraints.
      for i in all_jobs:
        for j in range(0, len(machines[i]) - 1):
          solver.Add(all_tasks[(i, j + 1)].StartsAfterEnd(all_tasks[(i, j)]))
    
      # Set the objective.
      obj_var = solver.Max([all_tasks[(i, len(machines[i])-1)].EndExpr()
                            for i in all_jobs])
      objective_monitor = solver.Minimize(obj_var, 1)
      # Create search phases.
      sequence_phase = solver.Phase([all_sequences[i] for i in all_machines],
                                    solver.SEQUENCE_DEFAULT)
      vars_phase = solver.Phase([obj_var],
                                solver.CHOOSE_FIRST_UNBOUND,
                                solver.ASSIGN_MIN_VALUE)
      main_phase = solver.Compose([sequence_phase, vars_phase])
      # Create the solution collector.
      collector = solver.LastSolutionCollector()
    
      # Add the interesting variables to the SolutionCollector.
      collector.Add(all_sequences)
      collector.AddObjective(obj_var)
    
      for i in all_machines:
        sequence = all_sequences[i];
        sequence_count = sequence.Size();
        for j in range(0, sequence_count):
          t = sequence.Interval(j)
          collector.Add(t.StartExpr().Var())
          collector.Add(t.EndExpr().Var())
      # Solve the problem.
      disp_col_width = 10
      if solver.Solve(main_phase, [objective_monitor, collector]):
        print("
    Optimal Schedule Length:", collector.ObjectiveValue(0), "
    ")
        sol_line = ""
        sol_line_tasks = ""
        print("Optimal Schedule", "
    ")
    
        for i in all_machines:
          seq = all_sequences[i]
          sol_line += "Machine " + str(i) + ": "
          sol_line_tasks += "Machine " + str(i) + ": "
          sequence = collector.ForwardSequence(0, seq)
          seq_size = len(sequence)
    
          for j in range(0, seq_size):
            t = seq.Interval(sequence[j]);
             # Add spaces to output to align columns.
            sol_line_tasks +=  t.Name() + " " * (disp_col_width - len(t.Name()))
    
          for j in range(0, seq_size):
            t = seq.Interval(sequence[j]);
            sol_tmp = "[" + str(collector.Value(0, t.StartExpr().Var())) + ","
            sol_tmp += str(collector.Value(0, t.EndExpr().Var())) + "] "
            # Add spaces to output to align columns.
            sol_line += sol_tmp + " " * (disp_col_width - len(sol_tmp))
    
          sol_line += "
    "
          sol_line_tasks += "
    "
    
        print(sol_line_tasks)
        print("Time Intervals for Tasks
    ")
        print(sol_line)
    
    if __name__ == '__main__':
      main()

  • 相关阅读:
    2-1(续)
    2-1
    28-69. Sqrt(x)
    27-75. Sort Colors
    26-78. Subsets
    MySQL--->存储引擎及图形化工具
    MySQL--->高级对象
    MySQL--->常用函数
    MySQL--->多表查询
    MySQL--->高级查询
  • 原文地址:https://www.cnblogs.com/BeanHsiang/p/9038796.html
Copyright © 2011-2022 走看看