zoukankan      html  css  js  c++  java
  • Codeforces Round #563 (Div. 2) ABCD 题解

    A. Ehab Fails to Be Thanos

    题意:问你能否对a数组任意排序,使得前n段和不等于后n段和。

    思路:水题,直接从小到大排序。这个情况都相等就一定无解。

    view code
    #include<iostream>
    #include<string>
    #include<algorithm>
    #include<cstdio>
    #include<cstring>
    #include<cmath>
    #include<map>
    #include <queue>
    #include<sstream>
    #include <stack>
    #include <set>
    #include <bitset>
    #include<vector>
    #define FAST ios::sync_with_stdio(false)
    #define abs(a) ((a)>=0?(a):-(a))
    #define sz(x) ((int)(x).size())
    #define all(x) (x).begin(),(x).end()
    #define mem(a,b) memset(a,b,sizeof(a))
    #define max(a,b) ((a)>(b)?(a):(b))
    #define min(a,b) ((a)<(b)?(a):(b))
    #define rep(i,a,n) for(int i=a;i<=n;++i)
    #define per(i,n,a) for(int i=n;i>=a;--i)
    #define pb push_back
    #define mp make_pair
    #define fi first
    #define se second
    using namespace std;
    typedef long long ll;
    typedef pair<ll,ll> PII;
    const int maxn = 1e5+200;
    const int inf=0x3f3f3f3f;
    const double eps = 1e-7;
    const double pi=acos(-1.0);
    const int mod = 1e9+7;
    inline int lowbit(int x){return x&(-x);}
    ll gcd(ll a,ll b){return b?gcd(b,a%b):a;}
    void ex_gcd(ll a,ll b,ll &d,ll &x,ll &y){if(!b){d=a,x=1,y=0;}else{ex_gcd(b,a%b,d,y,x);y-=x*(a/b);}}//x=(x%(b/d)+(b/d))%(b/d);
    inline ll qpow(ll a,ll b,ll MOD=mod){ll res=1;a%=MOD;while(b>0){if(b&1)res=res*a%MOD;a=a*a%MOD;b>>=1;}return res;}
    inline ll inv(ll x,ll p){return qpow(x,p-2,p);}
    inline ll Jos(ll n,ll k,ll s=1){ll res=0;rep(i,1,n+1) res=(res+k)%i;return (res+s)%n;}
    inline ll read(){ ll f = 1; ll x = 0;char ch = getchar();while(ch>'9'||ch<'0') {if(ch=='-') f=-1; ch = getchar();}while(ch>='0'&&ch<='9') x = (x<<3) + (x<<1) + ch - '0',  ch = getchar();return x*f; }
    int dir[4][2] = { {1,0}, {-1,0},{0,1},{0,-1} };
    
    ll n;
    ll a[maxn];
    
    int main()
    {
        n = read();
        ll sum1 = 0, sum2 = 0;
        rep(i,1,n*2) a[i] = read();
        sort(a+1,a+1+n+n);
        rep(i,1,n) sum1 += a[i];
        rep(i,n+1,n*2) sum2 += a[i];
        if(sum1==sum2) cout<<-1<<endl;
        else
        {
            rep(i,1,n*2) cout<<a[i]<<' '; cout<<endl;
        }
        return 0;
    }
    
    

    B. Ehab Is an Odd Person

    题意:若a[i]+a[j]是奇数,就可以调换这两者。这个操作可以做任意多次。问你能构成的最小字典序序列。

    思路:因为a[i]+a[j]要是奇数,必须是奇数+偶数的形式才行。而且能发现,其实只要奇数和偶数在a中都有,就可以拿出一个来和任意位置swap,就一定能达到字典序最小。反之就只能输出原序列。

    view code
    #include<iostream>
    #include<string>
    #include<algorithm>
    #include<cstdio>
    #include<cstring>
    #include<cmath>
    #include<map>
    #include <queue>
    #include<sstream>
    #include <stack>
    #include <set>
    #include <bitset>
    #include<vector>
    #define FAST ios::sync_with_stdio(false)
    #define abs(a) ((a)>=0?(a):-(a))
    #define sz(x) ((int)(x).size())
    #define all(x) (x).begin(),(x).end()
    #define mem(a,b) memset(a,b,sizeof(a))
    #define max(a,b) ((a)>(b)?(a):(b))
    #define min(a,b) ((a)<(b)?(a):(b))
    #define rep(i,a,n) for(int i=a;i<=n;++i)
    #define per(i,n,a) for(int i=n;i>=a;--i)
    #define pb push_back
    #define mp make_pair
    #define fi first
    #define se second
    using namespace std;
    typedef long long ll;
    typedef pair<ll,ll> PII;
    const int maxn = 1e5+200;
    const int inf=0x3f3f3f3f;
    const double eps = 1e-7;
    const double pi=acos(-1.0);
    const int mod = 1e9+7;
    inline int lowbit(int x){return x&(-x);}
    ll gcd(ll a,ll b){return b?gcd(b,a%b):a;}
    void ex_gcd(ll a,ll b,ll &d,ll &x,ll &y){if(!b){d=a,x=1,y=0;}else{ex_gcd(b,a%b,d,y,x);y-=x*(a/b);}}//x=(x%(b/d)+(b/d))%(b/d);
    inline ll qpow(ll a,ll b,ll MOD=mod){ll res=1;a%=MOD;while(b>0){if(b&1)res=res*a%MOD;a=a*a%MOD;b>>=1;}return res;}
    inline ll inv(ll x,ll p){return qpow(x,p-2,p);}
    inline ll Jos(ll n,ll k,ll s=1){ll res=0;rep(i,1,n+1) res=(res+k)%i;return (res+s)%n;}
    inline ll read(){ ll f = 1; ll x = 0;char ch = getchar();while(ch>'9'||ch<'0') {if(ch=='-') f=-1; ch = getchar();}while(ch>='0'&&ch<='9') x = (x<<3) + (x<<1) + ch - '0',  ch = getchar();return x*f; }
    int dir[4][2] = { {1,0}, {-1,0},{0,1},{0,-1} };
    
    ll a[maxn];
    bool vis[maxn];
    
    int main()
    {
        ll n = read();
        int cur = 2;
        ll ma = 1;
        while(cur<=n)
        {
            if(vis[cur])
            {
                cur++;
                continue;
            }
            for(ll i=1; i*cur<=n; i++)
            {
                if(!vis[i*cur]) a[i*cur] = ma, vis[i*cur] = 1;
            }
            cur++;
            ma++;
        }
        rep(i,2,n) cout<<a[i]<<' '; cout<<endl;
        return 0;
    }
    
    

    C. Ehab and a Special Coloring Problem

    题意:让你构造一个从i=2到i=n的序列。其中两下标(i,j)若互质,则a[i]不能等于a[j]。让你使得序列中最大值最小。输出这个序列。

    思路:直接看互质不好下手,我们可以在遍历到一个数的时候把它的n内倍数都赋予相同的值,这一步是贪心。那没被筛到的就是和它互质的,自然和它的值不同(每筛一趟要赋值的数就++)。那么外层遍历一遍1->n,内层遍历倍数,为一个调和级数的时间复杂度。总时间复杂度O(n(log)n)。

    view code
    #include<iostream>
    #include<string>
    #include<algorithm>
    #include<cstdio>
    #include<cstring>
    #include<cmath>
    #include<map>
    #include <queue>
    #include<sstream>
    #include <stack>
    #include <set>
    #include <bitset>
    #include<vector>
    #define FAST ios::sync_with_stdio(false)
    #define abs(a) ((a)>=0?(a):-(a))
    #define sz(x) ((int)(x).size())
    #define all(x) (x).begin(),(x).end()
    #define mem(a,b) memset(a,b,sizeof(a))
    #define max(a,b) ((a)>(b)?(a):(b))
    #define min(a,b) ((a)<(b)?(a):(b))
    #define rep(i,a,n) for(int i=a;i<=n;++i)
    #define per(i,n,a) for(int i=n;i>=a;--i)
    #define pb push_back
    #define mp make_pair
    #define fi first
    #define se second
    using namespace std;
    typedef long long ll;
    typedef pair<ll,ll> PII;
    const int maxn = 1e5+200;
    const int inf=0x3f3f3f3f;
    const double eps = 1e-7;
    const double pi=acos(-1.0);
    const int mod = 1e9+7;
    inline int lowbit(int x){return x&(-x);}
    ll gcd(ll a,ll b){return b?gcd(b,a%b):a;}
    void ex_gcd(ll a,ll b,ll &d,ll &x,ll &y){if(!b){d=a,x=1,y=0;}else{ex_gcd(b,a%b,d,y,x);y-=x*(a/b);}}//x=(x%(b/d)+(b/d))%(b/d);
    inline ll qpow(ll a,ll b,ll MOD=mod){ll res=1;a%=MOD;while(b>0){if(b&1)res=res*a%MOD;a=a*a%MOD;b>>=1;}return res;}
    inline ll inv(ll x,ll p){return qpow(x,p-2,p);}
    inline ll Jos(ll n,ll k,ll s=1){ll res=0;rep(i,1,n+1) res=(res+k)%i;return (res+s)%n;}
    inline ll read(){ ll f = 1; ll x = 0;char ch = getchar();while(ch>'9'||ch<'0') {if(ch=='-') f=-1; ch = getchar();}while(ch>='0'&&ch<='9') x = (x<<3) + (x<<1) + ch - '0',  ch = getchar();return x*f; }
    int dir[4][2] = { {1,0}, {-1,0},{0,1},{0,-1} };
    
    ll a[maxn];
    bool vis[maxn];
    
    int main()
    {
        ll n = read();
        int cur = 2;
        ll ma = 1;
        while(cur<=n)
        {
            if(vis[cur])
            {
                cur++;
                continue;
            }
            for(ll i=1; i*cur<=n; i++)
            {
                if(!vis[i*cur]) a[i*cur] = ma, vis[i*cur] = 1;
            }
            cur++;
            ma++;
        }
        rep(i,2,n) cout<<a[i]<<' '; cout<<endl;
        return 0;
    }
    
    

    D. Ehab and the Expected XOR Problem

    题意:让你构造一个序列,a[i]<(2^n),同时任意子段的异或和不等于x或者0。让你输出一个长度最长的符合条件序列。

    思路:有一个重要的结论要用到:
    若b[i]为a前i个数的异或和。那么a[l]a[l+1]...^a[r] = b[r]^b[l-1]。
    所以这个题要任意子段异或和不等于x或者0,就相当于任意b[r]^b[l-1]不等于0或x。
    因此我们只需要枚举前缀和,看看到当前这个数的时候如果前缀和是i,会不会有ix这个前缀和已经存在,如果不存在,这个前缀和就合法,这个数就是ipre,pre为当前凑出来的数的前缀和。

    view code
    #include<iostream>
    #include<string>
    #include<algorithm>
    #include<cstdio>
    #include<cstring>
    #include<cmath>
    #include<map>
    #include <queue>
    #include<sstream>
    #include <stack>
    #include <set>
    #include <bitset>
    #include<vector>
    #define FAST ios::sync_with_stdio(false)
    #define abs(a) ((a)>=0?(a):-(a))
    #define sz(x) ((int)(x).size())
    #define all(x) (x).begin(),(x).end()
    #define mem(a,b) memset(a,b,sizeof(a))
    #define max(a,b) ((a)>(b)?(a):(b))
    #define min(a,b) ((a)<(b)?(a):(b))
    #define rep(i,a,n) for(int i=a;i<=n;++i)
    #define per(i,n,a) for(int i=n;i>=a;--i)
    #define pb push_back
    #define mp make_pair
    #define fi first
    #define se second
    using namespace std;
    typedef long long ll;
    typedef pair<ll,ll> PII;
    const int maxn = 2e6+200;
    const int inf=0x3f3f3f3f;
    const double eps = 1e-7;
    const double pi=acos(-1.0);
    const int mod = 1e9+7;
    inline int lowbit(int x){return x&(-x);}
    ll gcd(ll a,ll b){return b?gcd(b,a%b):a;}
    void ex_gcd(ll a,ll b,ll &d,ll &x,ll &y){if(!b){d=a,x=1,y=0;}else{ex_gcd(b,a%b,d,y,x);y-=x*(a/b);}}//x=(x%(b/d)+(b/d))%(b/d);
    inline ll qpow(ll a,ll b,ll MOD=mod){ll res=1;a%=MOD;while(b>0){if(b&1)res=res*a%MOD;a=a*a%MOD;b>>=1;}return res;}
    inline ll inv(ll x,ll p){return qpow(x,p-2,p);}
    inline ll Jos(ll n,ll k,ll s=1){ll res=0;rep(i,1,n+1) res=(res+k)%i;return (res+s)%n;}
    inline ll read(){ ll f = 1; ll x = 0;char ch = getchar();while(ch>'9'||ch<'0') {if(ch=='-') f=-1; ch = getchar();}while(ch>='0'&&ch<='9') x = (x<<3) + (x<<1) + ch - '0',  ch = getchar();return x*f; }
    int dir[4][2] = { {1,0}, {-1,0},{0,1},{0,-1} };
    
    ll a[maxn];
    ll vis[maxn];
    
    int main()
    {
        ll n = read();
        ll x = read();
        vector<ll> ans;
        vis[0] = 1;
        ll pre = 0;
        for(ll i=1; i<=(1<<n)-1;i ++)
        {
            if(vis[i^x]) continue;
            vis[i] = 1;
            ans.pb(i^pre);
            pre = i;
        }
        cout<<ans.size()<<'
    ';
        for(int i=0; i<ans.size(); i++) cout<<ans[i]<<' '; cout<<endl;
        return 0;
    }
    
    

  • 相关阅读:
    js之面向对象
    常用功能
    html圆环(该代码非原创,具体出处已不详)
    关于jsonp的一篇文章(传播好的东西)
    当切换select时,获取select选中的值;获取选中的单选按钮的val,判断复选框是否选中
    js类型判断(数字、0、""、undefined、null)
    js获取窗口可视范围的高度、获取窗口滚动条高度、文档内容实际高度
    66
    55
    44
  • 原文地址:https://www.cnblogs.com/Bgwithcode/p/13645523.html
Copyright © 2011-2022 走看看