zoukankan      html  css  js  c++  java
  • SparkStreaming整合flume

    SparkStreaming整合flume

    在实际开发中push会丢数据,因为push是由flume将数据发给程序,程序出错,丢失数据。所以不会使用不做讲解,这里讲解poll,拉去flume的数据,保证数据不丢失。

    1.首先你得有flume

    比如你有:【如果没有请走这篇:搭建flume集群(待定)

    这里使用的flume的版本是apache1.6 cdh公司集成

    这里需要下载

    (1).我这里是将spark-streaming-flume-sink_2.11-2.0.2.jar放入到flume的lib目录下

     

    cd /export/servers/apache-flume-1.6.0-cdh5.14.0-bin/lib
    

      (ps:我的flume安装目录,使用ftp工具上传上去,我使用的是finalShell支持ssh也支持ftp(需要的小伙伴,点我下载))

    (2)修改flume/lib下的scala依赖包(保证版本一致)

    我这里是将spark中jar安装路径的scala-library-2.11.8.jar替换掉flume下的scala-library-2.10.5.jar

    删除scala-library-2.10.5.jar

    rm -rf /export/servers/apache-flume-1.6.0-cdh5.14.0-bin/lib/scala-library-2.10.5.jar 

    复制scala-library-2.11.8.jar

    cp /export/servers/spark-2.0.2/jars/scala-library-2.11.8.jar /export/servers/apache-flume-1.6.0-cdh5.14.0-bin/lib/

    (3)编写flume-poll.conf文件

    创建目录

    mkdir /export/data/flume

    创建配置文件

    vim /export/logs/flume-poll.conf

    编写配置,标注发绿光的地方需要注意更改为自己本机的(flume是基于配置执行任务)

    a1.sources = r1
    a1.sinks = k1
    a1.channels = c1
    #source
    a1.sources.r1.channels = c1
    a1.sources.r1.type = spooldir
    a1.sources.r1.spoolDir = /export/data/flume
    a1.sources.r1.fileHeader = true
    #channel
    a1.channels.c1.type =memory
    a1.channels.c1.capacity = 20000
    a1.channels.c1.transactionCapacity=5000
    #sinks
    a1.sinks.k1.channel = c1
    a1.sinks.k1.type = org.apache.spark.streaming.flume.sink.SparkSink
    a1.sinks.k1.hostname=192.168.52.110
    a1.sinks.k1.port = 8888
    a1.sinks.k1.batchSize= 2000 

    底行模式wq保存退出

    执行flume

    flume-ng agent -n a1 -c /opt/bigdata/flume/conf -f /export/logs/flume-poll.conf -Dflume.root.logger=INFO,console

    在监视的/export/data/flume下放入文件                    (黄色对应的是之前创建的配置文件)

    执行成功

     代表你flume配置没有问题,接下来开始编写代码

    1.导入相关依赖

    <dependency>
        <groupId>org.apache.spark</groupId>
        <artifactId>spark-streaming-flume_2.11</artifactId>
        <version>2.0.2</version>
    </dependency>
    

    2.编码

    package SparkStreaming
    
    import SparkStreaming.DefinedFunctionAdds.updateFunc
    import org.apache.spark.{SparkConf, SparkContext}
    import org.apache.spark.streaming.{Seconds, StreamingContext}
    import org.apache.spark.streaming.dstream.{DStream, ReceiverInputDStream}
    import org.apache.spark.streaming.flume.{FlumeUtils, SparkFlumeEvent}
    
    object SparkStreamingFlume {
      def main(args: Array[String]): Unit = {
        //创建sparkContext
        val conf: SparkConf = new SparkConf().setAppName("DefinedFunctionAdds").setMaster("local[2]")
        val sc = new SparkContext(conf)
    
        //去除多余的log,提高可视率
        sc.setLogLevel("WARN")
    
        //创建streamingContext
        val scc = new StreamingContext(sc,Seconds(5))
    
        //设置备份
        scc.checkpoint("./flume")
    
        //receive(task)拉取数据
        val num1: ReceiverInputDStream[SparkFlumeEvent] = FlumeUtils.createPollingStream(scc,"192.168.52.110",8888)
        //获取flume中的body
        val value: DStream[String] = num1.map(x=>new String(x.event.getBody.array()))
        //切分处理,并附上数值1
        val result: DStream[(String, Int)] = value.flatMap(_.split(" ")).map((_,1))
    
        //结果累加
        val result1: DStream[(String, Int)] = result.updateStateByKey(updateFunc)
    
        result1.print()
        //启动并阻塞
        scc.start()
        scc.awaitTermination()
      }
    
    
      def updateFunc(currentValues:Seq[Int], historyValues:Option[Int]):Option[Int] = {
        val newValue: Int = currentValues.sum+historyValues.getOrElse(0)
        Some(newValue)
      }
    
    }

    运行

    加入新的文档到监控目录  结果

    成功结束!

  • 相关阅读:
    对dedecms、php168,phpcms、VeryCMS、DiyPage五款开源整站系统的简单评点(
    [转+总结]Linux虚拟系统安装VMware Tools总结
    VMware虚拟机的联网(图)
    自己动手架设linux下Web服务器(图)4
    免费三个月的美国vps:JUMPLINE,速度不错
    中文 CentOS 攻略
    linux不能上网如何配置
    格式化字符串
    gitlab在push代码的时候报错
    运行ntpdate报错:Temporary failure in name resolution
  • 原文地址:https://www.cnblogs.com/BigDataBugKing/p/11228784.html
Copyright © 2011-2022 走看看