zoukankan      html  css  js  c++  java
  • Python爬虫进阶一之爬虫框架概述

    综述

    爬虫入门之后,我们有两条路可以走。

    一个是继续深入学习,以及关于设计模式的一些知识,强化Python相关知识,自己动手造轮子,继续为自己的爬虫增加分布式,多线程等功能扩展。另一条路便是学习一些优秀的框架,先把这些框架用熟,可以确保能够应付一些基本的爬虫任务,也就是所谓的解决温饱问题,然后再深入学习它的源码等知识,进一步强化。

    就个人而言,前一种方法其实就是自己动手造轮子,前人其实已经有了一些比较好的框架,可以直接拿来用,但是为了自己能够研究得更加深入和对爬虫有更全面的了解,自己动手去多做。后一种方法就是直接拿来前人已经写好的比较优秀的框架,拿来用好,首先确保可以完成你想要完成的任务,然后自己再深入研究学习。第一种而言,自己探索的多,对爬虫的知识掌握会比较透彻。第二种,拿别人的来用,自己方便了,可是可能就会没有了深入研究框架的心情,还有可能思路被束缚。

    不过个人而言,我自己偏向后者。造轮子是不错,但是就算你造轮子,你这不也是在基础类库上造轮子么?能拿来用的就拿来用,学了框架的作用是确保自己可以满足一些爬虫需求,这是最基本的温饱问题。倘若你一直在造轮子,到最后都没造出什么来,别人找你写个爬虫研究了这么长时间了都写不出来,岂不是有点得不偿失?所以,进阶爬虫我还是建议学习一下框架,作为自己的几把武器。至少,我们可以做到了,就像你拿了把枪上战场了,至少,你是可以打击敌人的,比你一直在磨刀好的多吧?

    框架概述

    博主接触了几个爬虫框架,其中比较好用的是 Scrapy 和PySpider。就个人而言,pyspider上手更简单,操作更加简便,因为它增加了 WEB 界面,写爬虫迅速,集成了phantomjs,可以用来抓取js渲染的页面。Scrapy自定义程度高,比 PySpider更底层一些,适合学习研究,需要学习的相关知识多,不过自己拿来研究分布式和多线程等等是非常合适的。

    在这里博主会一一把自己的学习经验写出来与大家分享,希望大家可以喜欢,也希望可以给大家一些帮助。

    PySpider

    PySpiderbinux做的一个爬虫架构的开源化实现。主要的功能需求是:

    • 抓取、更新调度多站点的特定的页面
    • 需要对页面进行结构化信息提取
    • 灵活可扩展,稳定可监控

    而这也是绝大多数python爬虫的需求 —— 定向抓取,结构化化解析。但是面对结构迥异的各种网站,单一的抓取模式并不一定能满足,灵活的抓取控制是必须的。为了达到这个目的,单纯的配置文件往往不够灵活,于是,通过脚本去控制抓取是最后的选择。
    而去重调度,队列,抓取,异常处理,监控等功能作为框架,提供给抓取脚本,并保证灵活性。最后加上web的编辑调试环境,以及web任务监控,即成为了这套框架。

    pyspider的设计基础是:以python脚本驱动的抓取环模型爬虫

    • 通过python脚本进行结构化信息的提取,follow链接调度抓取控制,实现最大的灵活性
    • 通过web化的脚本编写、调试环境。web展现调度状态
    • 抓取环模型成熟稳定,模块间相互独立,通过消息队列连接,从单进程到多机分布式灵活拓展

    pyspider-arch

    pyspider的架构主要分为 scheduler(调度器), fetcher(抓取器), processor(脚本执行):

    • 各个组件间使用消息队列连接,除了scheduler是单点的,fetcher 和 processor 都是可以多实例分布式部署的。 scheduler 负责整体的调度控制
    • 任务由 scheduler 发起调度,fetcher 抓取网页内容, processor 执行预先编写的python脚本,输出结果或产生新的提链任务(发往 scheduler),形成闭环。
    • 每个脚本可以灵活使用各种python库对页面进行解析,使用框架API控制下一步抓取动作,通过设置回调控制解析动作。

    Scrapy

    Scrapy是一个为了爬取网站数据,提取结构性数据而编写的应用框架。 可以应用在包括数据挖掘,信息处理或存储历史数据等一系列的程序中。
    其最初是为了页面抓取 (更确切来说, 网络抓取 )所设计的, 也可以应用在获取API所返回的数据(例如 Amazon Associates Web Services ) 或者通用的网络爬虫。Scrapy用途广泛,可以用于数据挖掘、监测和自动化测试

    Scrapy 使用了 Twisted 异步网络库来处理网络通讯。整体架构大致如下

    Scrapy
     

    Scrapy主要包括了以下组件:

    • 引擎(Scrapy): 用来处理整个系统的数据流处理, 触发事务(框架核心)
    • 调度器(Scheduler): 用来接受引擎发过来的请求, 压入队列中, 并在引擎再次请求的时候返回. 可以想像成一个URL(抓取网页的网址或者说是链接)的优先队列, 由它来决定下一个要抓取的网址是什么, 同时去除重复的网址
    • 下载器(Downloader): 用于下载网页内容, 并将网页内容返回给蜘蛛(Scrapy下载器是建立在twisted这个高效的异步模型上的)
    • 爬虫(Spiders): 爬虫是主要干活的, 用于从特定的网页中提取自己需要的信息, 即所谓的实体(Item)。用户也可以从中提取出链接,让Scrapy继续抓取下一个页面
    • 项目管道(Pipeline): 负责处理爬虫从网页中抽取的实体,主要的功能是持久化实体、验证实体的有效性、清除不需要的信息。当页面被爬虫解析后,将被发送到项目管道,并经过几个特定的次序处理数据。
    • 下载器中间件(Downloader Middlewares): 位于Scrapy引擎和下载器之间的框架,主要是处理Scrapy引擎与下载器之间的请求及响应。
    • 爬虫中间件(Spider Middlewares): 介于Scrapy引擎和爬虫之间的框架,主要工作是处理蜘蛛的响应输入和请求输出。
    • 调度中间件(Scheduler Middewares): 介于Scrapy引擎和调度之间的中间件,从Scrapy引擎发送到调度的请求和响应。

    Scrapy运行流程大概如下:

    • 首先,引擎从调度器中取出一个链接(URL)用于接下来的抓取
    • 引擎把URL封装成一个请求(Request)传给下载器,下载器把资源下载下来,并封装成应答包(Response)
    • 然后,爬虫解析Response
    • 若是解析出实体(Item),则交给实体管道进行进一步的处理。
    • 若是解析出的是链接(URL),则把URL交给Scheduler等待抓取

    结语

    对这两个框架进行基本的介绍之后,接下来我会介绍这两个框架的安装以及框架的使用方法,希望对大家有帮助。

    转载:静觅 » Python爬虫进阶一之爬虫框架概述

  • 相关阅读:
    ActiveMQ 即时通讯服务 浅析
    Asp.net Mvc (Filter及其执行顺序)
    ActiveMQ基本介绍
    ActiveMQ持久化消息的三种方式
    Windows Azure Virtual Machine (27) 使用psping工具,测试Azure VM网络连通性
    Azure China (10) 使用Azure China SAS Token
    Windows Azure Affinity Groups (3) 修改虚拟网络地缘组(Affinity Group)的配置
    Windows Azure Storage (22) Azure Storage如何支持多级目录
    Windows Azure Virtual Machine (26) 使用高级存储(SSD)和DS系列VM
    Azure Redis Cache (2) 创建和使用Azure Redis Cache
  • 原文地址:https://www.cnblogs.com/BigFishFly/p/6380033.html
Copyright © 2011-2022 走看看