zoukankan      html  css  js  c++  java
  • torch.nn.Embedding Learner

    官方文档

     Parameters

    • num_embeddings (int) – size of the dictionary of embeddings

    • embedding_dim (int) – the size of each embedding vector

    • padding_idx (intoptional) – If specified, the entries at padding_idx do not contribute to the gradient; therefore, the embedding vector at padding_idx is not updated during training, i.e. it remains as a fixed “pad”. For a newly constructed Embedding, the embedding vector at padding_idx will default to all zeros, but can be updated to another value to be used as the padding vector.

    • max_norm (floatoptional) – If given, each embedding vector with norm larger than max_norm is renormalized to have norm max_norm.

    • norm_type (floatoptional) – The p of the p-norm to compute for the max_norm option. Default 2.

    • scale_grad_by_freq (booleanoptional) – If given, this will scale gradients by the inverse of frequency of the words in the mini-batch. Default False.

    • sparse (booloptional) – If True, gradient w.r.t. weight matrix will be a sparse tensor. See Notes for more details regarding sparse gradients.


    Examples:

    import torch
    from torch import nn
    embedding = nn.Embedding(5, 4) # 假定字典中只有5个词,词向量维度为4
    word = [[1, 2, 3],
            [2, 3, 4]] # 每个数字代表一个词,例如 {'!':0,'how':1, 'are':2, 'you':3,  'ok':4}
                        #而且这些数字的范围只能在0~4之间,因为上面定义了只有5个词
    embed = embedding(torch.LongTensor(word))
    print(embed)
    print(embed.size())

     结果:

    tensor([[[-0.0436, -1.0037, 0.2681, -0.3834],
    [ 0.0222, -0.7280, -0.6952, -0.7877],
    [ 1.4341, -0.0511, 1.3429, -1.2345]],

    [[ 0.0222, -0.7280, -0.6952, -0.7877],
    [ 1.4341, -0.0511, 1.3429, -1.2345],
    [-0.2014, -0.4946, -0.0273, 0.5654]]], grad_fn=<EmbeddingBackward0>)
    torch.Size([2, 3, 4])

    因上求缘,果上努力~~~~ 作者:Learner-,转载请注明原文链接:https://www.cnblogs.com/BlairGrowing/p/15683850.html

  • 相关阅读:
    js面试题-----算法类
    js面试题-----安全类
    js面试题-----通信类
    js面试题-----面向对象类
    js面试题-----HTTP协议类
    js面试题-----CSS盒模型
    Java-JVM 类的初始化
    加密的相关基础
    AngularJS-directive.js 基本指令
    AngularJS-liveRoomDirective.js 直播间指令
  • 原文地址:https://www.cnblogs.com/BlairGrowing/p/15683850.html
Copyright © 2011-2022 走看看