zoukankan      html  css  js  c++  java
  • 安装cuda+cudnn流程记录

    1.安装cuda

    https://developer.nvidia.cn/cuda-downloads,可查看安装版本:

    下载 安装:

    wget https://developer.download.nvidia.com/compute/cuda/11.5.1/local_installers/cuda_11.5.1_495.29.05_linux.run
    sudo sh cuda_11.5.1_495.29.05_linux.run

     已经安装了驱动,所以不选择Driver。等待后,安装成功:

    添加路径参数:

    export PATH="/usr/local/cuda-11.5/bin:$PATH" 
    export LD_LIBRARY_PATH="/usr/local/cuda-11.5/lib64:$LD_LIBRARY_PATH"

    测试是否安装成功:

    复制代码
    #编译并测试设备 deviceQuery:
    cd /usr/local/cuda-11.5/samples/1_Utilities/deviceQuery
    sudo make
    ./deviceQuery

      deviceQuery, CUDA Driver = CUDART, CUDA Driver Version = 11.5, CUDA Runtime Version = 11.5, NumDevs = 1
      Result = PASS

    在.bashrc文件中添加:

    export CUDA_HOME=/usr/local/cuda-11.5
    export LD_LIBRARY_PATH=/usr/local/cuda-11.5/lib64:$LD_LIBRARY_PATH
    export PATH=/usr/local/cuda-11.5/bin:$PATH

    检查.profile文件中自动执行。再查看cuda版本:

    $: nvcc -V
    nvcc: NVIDIA (R) Cuda compiler driver
    Copyright (c) 2005-2021 NVIDIA Corporation
    Built on Thu_Nov_18_09:45:30_PST_2021
    Cuda compilation tools, release 11.5, V11.5.119
    Build cuda_11.5.r11.5/compiler.30672275_0

     2.安装cudnn

     https://developer.nvidia.cn/rdp/cudnn-archive#a-collapse742-10,查询版本。

    下载安装,需要登陆账户。下载挺慢的。1.4G。

     解压文件并复制:

    tar zxvf cudnn-11.5-linux-x64-v8.3.0.98.tgz
    sudo cp cuda/include/cudnn.h /usr/local/cuda/include/
    sudo cp cuda/lib64/libcudnn* /usr/local/cuda/lib64/
    sudo chmod a+r /usr/local/cuda/include/cudnn.h
    sudo chmod a+r /usr/local/cuda/lib64/libcudnn*

    因为版本升级,使用之前的命令:

    cat /usr/local/cuda/include/cudnn.h | grep CUDNN_MAJOR -A 2

    查不出版本的结果。查看版本见3.2。

    3.安装conda

    wget -c https://repo.continuum.io/miniconda/Miniconda3-latest-Linux-x86_64.sh
    
    chmod 777 Miniconda3-latest-Linux-x86_64.sh
    sh Miniconda3-latest-Linux-x86_64.sh
    
    export  PATH="/home/gaoxiang/miniconda3/bin:"$PATH

     最后一行也需要添加到.bashrc文件中。创建conda环境:

    conda create -n sc_37 python=3.7
    conda activate sc_37

    在conda环境的基础上安装pytorch:

    3.1 安装pytorch

    但是没有cuda11.5版本对应的pytorch,尝试安装11.3版本的是否有问题。https://pytorch.org/get-started/locally/。

    conda install pytorch torchvision torchaudio cudatoolkit=11.3 -c pytorch

    查看是否可用GPU:

    >>> import torch
    >>> torch.cuda.is_available()
    True
    >>> torch.cuda.device_count()
    1
    >>> torch.cuda.get_device_name(0)
    'NVIDIA GeForce RTX 3090'
    >>> torch.cuda.current_device()
    0

    3.2 安装tensorflow

    cudnn版本:

    import torch
    torch.backends.cudnn.version()
    
    8005

     那么按照上图,安装2.4.0版本:

    pip install tensorflow-gpu==2.4.0
    conda install -c conda-forge tensorboardx 

    尝试:

    from torch.utils.tensorboard import SummaryWriter

    ok。

  • 相关阅读:
    (转)Docker network命令
    (转)Navicat连接MySQL8.0亲测有效
    (转)Docker 网络
    Docker问题方案收集
    (转)docker run的--rm选项详解
    (转)docker-compose安装
    (转)教你分分钟搞定Docker私有仓库Registry
    (转)Docker入门——Dockerfile详解
    (转)Windows下安装Docker, GitBash环境配置
    (转)教你分分钟搞定Docker私有仓库Registry
  • 原文地址:https://www.cnblogs.com/BlueBlueSea/p/15706492.html
Copyright © 2011-2022 走看看