zoukankan      html  css  js  c++  java
  • CodeForces1152CNeko does Maths

    time limit per test:1 second
    memory limit per test:256 megabytes
    input:standard input
    output:standard output

    Neko loves divisors. During the latest number theory lesson, he got an interesting exercise from his math teacher.

    Neko has two integers a and b. His goal is to find a non-negative integer k such that the least common multiple of a+k and b+k is the smallest possible. If there are multiple optimal integers k, he needs to choose the smallest one.

    Given his mathematical talent, Neko had no trouble getting Wrong Answer on this problem. Can you help him solve it?

    Input

    The only line contains two integers a and b (1a,b10^9).

    Output

    Print the smallest non-negative integer k (k0) such that the lowest common multiple of a+k and b+k is the smallest possible.

    If there are many possible integers k giving the same value of the least common multiple, print the smallest one.

    Examples
     
    input
    6 10
    output
    2
    input
    21 31
    output
    9
     
     
    input
    5 10
    output
    0
     
     
    Note

    In the first test, one should choose k=2, as the least common multiple of 6+2 and 10+2 is 24, which is the smallest least common multiple possible.

    题解

     假设a <= b,根据LCMGCD的关系知:LCM(a,b) = a*b/GCD(a,b),要求最小的k满足最小的LCM(a+k,b+k) = (a+k)*(b+k)/GCD(a+k,b+k),由更相减损法知,GCD(a+k,b+k) = GCD(a+k,b-a)。这样就使得GCD中有一项(即b-a)是固定的,这样有什么好处呢?没错,就是GCD(a+k,b-a)的结果一定是b-a的某个因子,而b-a的所有因子是有限个,且可以在sqrt(b-a)的时间内求出,故枚举b-a所有的因子即可。对于b-a的每一个因子di,都可以求出最小的ki = di - a%d(a%di != 0) 或者ki = 0 (a%di == 0),再代回公式计算,保留使得LCM(a+k,b+k)最小的k即可。

     1 #include <iostream>
     2 #include <cstdio>
     3 #include <cstdlib>
     4 #include <cstring>
     5 #include <string>
     6 #include <algorithm>
     7 #define re register
     8 #define il inline
     9 #define ll long long
    10 #define ld long double
    11 const ll MAXN = 1e6+5;
    12 const ll INF = 1e8;
    13 
    14 ll f[MAXN];
    15 
    16 //快读
    17 il ll read()
    18 {
    19     char ch = getchar();
    20     ll res = 0, f = 1;
    21     while(ch < '0' || ch > '9')
    22     {
    23         if(ch == '-')   f = -1;
    24         ch = getchar();
    25     }
    26     while(ch >= '0' && ch <= '9')
    27     {
    28         res = (res<<1) + (res<<3) + (ch-'0');
    29         ch = getchar();
    30     }
    31     return res*f;
    32 }
    33 
    34 //辗转相除法
    35 ll gcd(ll a, ll b)
    36 {
    37     ll mx = std::max(a,b);
    38     ll mi = std::min(a,b);
    39     return mi == 0 ? mx : gcd(mi,mx%mi);
    40 }
    41 
    42 int main()
    43 {
    44     ll a = read();
    45     ll b = read();
    46     ll mx = std::max(a,b);
    47     ll mi = std::min(a,b);
    48     ll tot = 0;
    49     ll c = mx-mi;
    50     ll n = sqrt(c);
    51     //枚举c的所有因子
    52     for(re ll i = 1; i <= n; ++i)
    53     {
    54         if(!(c%i))
    55         {
    56             f[++tot] = i;
    57             f[++tot] = c/i;
    58         }
    59     }
    60     //依次代回c的因子计算
    61     ll k = 0;
    62     ll d = a*b/gcd(a,b);
    63     for(re ll i = 1; i <= tot; ++i)
    64     {
    65         ll tk = !(mi%f[i]) ? 0 : f[i]-mi%f[i];
    66         ll td = (a+tk)*(b+tk)/f[i];
    67         if(td <= d)
    68         {
    69             if(td == d) k = std::min(k,tk);     //二者相同取最小的k
    70             else    k = tk;
    71             d = td;
    72         }
    73     }
    74     printf("%lld\n", k);
    75     return 0;
    76 }
    View Code
  • 相关阅读:
    什么是长尾关键词?【摘】
    Visual Studio 2010已经发布,简单列举一下新特性,重点学习一下
    增加反向链接的35个技巧【摘】
    鼠标移动上变为手的样式的css,cursor: pointer或者CURSOR: hand
    百度空间地址栏的logo咋成了迅雷的logo了,被攻击后遗症?
    百度优化技巧和方法【摘】
    asp入门之分页
    asp入门之操作数据库
    asp入门之简单介绍
    asp入门之在线编辑器(QQMail HtmlEditor 菜刀版 1.2版)改进版
  • 原文地址:https://www.cnblogs.com/BlueHeart0621/p/11566871.html
Copyright © 2011-2022 走看看